Chapter 6.
Diagonalization.



1 Diagonalization Process

Most calculations are simplified if the matrices are diagonal.
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It will therefore be interesting to have methods that allow ob-
taining diagonal forms for any matrix.
A > D
~ diagonalization ~ ’

Any matrix Diagonal matrix

in such a way that we can recover for A the operations that we
perform more easily on D.

Definition 1. Given A € M,,, we say it is a diagonalizable
matrix if there exists C' € M,, invertible such that the matrix

D=C1A4.C

is a diagonal matrix. In such a case, we say that the matrix
C diagonalizes the matrix A and we call it the change-of-basis
matrix.



Properties 2. Let A € M,, be a diagonalizable matriz such
that

D=C"1.4.C
where C, D € M,,, with D being a diagonal matrix and C
an invertible matrixz. Then:

1) [Al = |DI.

i) A" = C-D"-C~', n € N. In particular, if A is invertible
this property is also valid forn € Z, n < 0.
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Let A= -3 5 =2
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Given a matrix A € M,,«,, to diagonalize it we must find the
change-of-basis matrix C' and the diagonalization D. For this,
we will make the following considerations:

e We will assume that the column vectors of the change-of-basis
matrix C' are vy, ..., v, € R" that is,

C = <U1|U2| ce |1}n),
and that

e The matrix ' must have an inverse and therefore

det(C') # 0 < {v1,v9,...,v,} are all of them independent.
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e [t is easy to verify that
A-C=A-(v|vg]...|v,) = (Avi|Avy|. .. |Av,)
and also that
C'- D = (M| Aavs| ... [Ayop).

e [f the matrix C' diagonalizes A with D being the diagonal-
ization then, taking into account the previous point,

D=C'" A CsA-C=C-D
S (A’Ul‘AUQ‘ . |A’Un) = ()\1’01‘)\21)2| . ‘)\nvn>

( A?Jl = )\1’01

<:>< A’Ug : )\2’02

Av, = A\,

\
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Therefore, if we find a basis of vectors of R",

{Ula V2, ... avn}7

satisfying this last property then the matrix A is diagonalizable
with C' = (v1|ve] . .. |v,) and
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Definition 3. Given A € M,, we call:

e eigenvalue of A any real number A € R such that there
exists some non-zero vector, v € R", such that

A-v=)\.

e eigenvector of A associated with the eigenvalue \
any vector v € R" such that

A-v= M.

e eigenspace of A associated with the eigenvalue \
the set of all eigenvectors of A associated with the eigenvalue
A,

Vi={veR"/A -v= v}

Such set V), is a vector subspace of R".

The concepts of eigenvector and eigenvalue have important
interpretations in different iterative matrix models where they
determine the stability positions of a system.
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To check if A is an eigenvalue of A we must find a non-zero
vector, v € R", such that

A-v= ).
4
[sv=|3] an eigenvector?
0
4 4
Al3l =X1|3
0 0

Is A = 3 an eigenvalue?

A — M3| =2 —5X+4X% = )\
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To check if A is an eigenvalue of A we must find a non-zero
vector, v € R", such that

A-v= M.

Now

Av=wec A v-— =0 A-v—-A,,-v=0

s (A=A, -v=0,
4 4
Al3]l =X1[3
0 0
Is A = 3 an eigenvalue?

A — 5| =2 — 5\ +4X% — \°
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To check if A is an eigenvalue of A we must find a non-zero
vector, v € R", such that

A-v=)\.
Now,

Av=wec A v-— =0 A-v—-A,,-v=0
s (A=A, -v=0,

Therefore, if we call A = A — \I,,, what we must find is a non-

zero vector v = (1, To, ..., x,) € R" such that
T 0
A=Y
ra)  \0

Is A = 3 an eigenvalue?

A — M3| =2 —5X+4X% = )\
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To check if A is an eigenvalue of A we must find a non-zero
vector, v € R", such that

A-v=)\.

Now

Av=wecA v-— =0 A-v—-A,,-v=0
s (A=A, -v=0,

Therefore, if we call A = A — \I,,, what we must find is a non-

zero vector v = (xy1, To, ..., T,) € R" such that
I 0
ol I .
r,)  \0

A is an eigenvalue of A < dv € R", v #£ 0, such that A-v = \v
X1

s A = ( is indeterminate < |A| = 0

T
s |A— M, =0.
A — A5l =2 — 5\ +4X% — \°
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Let V) be the set of all eigenvectors of A associated with the
eigenvalue X. From all the previous reasoning, it follows that

Vi=AveR"A -v=>v}

I 0

I 0
— {v=(21,79,...,m) ERV(A-XL)- [ | = ||}

T, 0

so V), is a vector subspace with implicit equations given in matrix
form by

I 0
Vi=(A-an)- |72 =Y
Ty 0

This is the basic technique for calculating eigenvalues and
elgenvectors.
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Property 4. Given A € M,,:

i) It holds that
A € R is an eigenvalue of A<= |A— AI,,| =0

and, if A € R 1s an eigenvalue, then V) s the vector
subspace of R" given by

I 0
V)\ = (A — )\In) ) :U:Z — 0
Ty, 0

and therefore
dim(V)) = n — rango(A — A1,).

i) Suppose that Ay, Xo, ..., A\p € R are eigenvalues of A dis-
tinct from each other. Then, of By 1s a basis of V), By s
a basis of V),,..., By is a basis of V),, we have that

H=B,UByU---UB,
15 an independent set.

i) If A € R is an eigenvalue of the matrix A and v € R" is
an eigenvector of A associated with \ then

APy = N,
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Definition 5. Given A € M,, we call characteristic polynomial
of the matrix A the polynomial

p<)‘> — |A - )\]n| S ]P)n<>‘>
and we call characteristic equation of the matrix A the equation
p(A) = 0.

Remark. From all the above, it follows that:

e The eigenvalues of a matrix, A € M,,, are the solutions of
its characteristic equation.

e A matrix can be diagonalized if we find a basis formed exclu-
sively by eigenvectors.
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We may encounter the following problems that would prevent
a matrix from being diagonalizable:

1. The matrix either has no eigenvalues or has an insufficient
number of them.

2. The eigenvectors of the matrix do not allow forming a basis.

Definition 6.

i) Given a polynomial, p(A) € P,(\), we say that A\j € R is a
zero of multiplicity k& of p(\) if we can express p(A) in the
form

p(A) = a(A) - (A = o),
where q(A) € P, () verifies that g(Ag) # 0.
ii) Given A € M,, and A € R an eigenvalue of A we say that

the algebraic multiplicity of A is k if A is a zero of multiplicity
k of the characteristic polynomial of the matrix A.

iii) Given A € M,, and A € R an eigenvalue of A, we call

geometric multiplicity of A the dimension of the eigenspace
associated with A, V), that is, dim(V}).
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Property 7. Let A € M, whose eigenvalues are Ai, As,
oy A, Such thatVi=1,....k

n; s the algebraic multiplicity of ;.

m; 1S the geometric multiplicity of A;.

Then 1t holds that

1.n1+n2+~-+nk§n.
ni+ng+ -+ np=n.

3. A is diagonalizable < { m= g Yie1,... k-
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Property 8.

i) If A e M, is a diagonal matriz,

then A s diagonalizable, and it holds that the matrixz I,
diagonalizes the matrix A, the canonical basis B,. of R"
is a basis of eigenvectors of A, and its eigenvalues are
A, Ao, ..., A\, € R such that the number of times each
eigenvalue 1s repeated indicates i1ts algebraic and geomet-
ric multiplicity.

i) Bvery symmetric matriz is diagonalizable.

iii) If A € M,, has n eigenvalues, all of them distinct, then
A 1is diagonalizable.

i) If the columns or the rows of A € M, all sum to the
same number r € R, then A\ =r is an eigenvalue of A.

v) The characteristic polynomial of A € My is
p(A\) = \* — trace(A)\ + | Al.
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vi) The characteristic polynomial of A =

./\/lg 18

p(A) = =A% + trace(A))\?

-

+| Al.

(

ail a2
a21 a22
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2 Study of Trends in Iterative Processes

The product and power of matrices are fundamental in formu-
lating the most important matrix models.

Suppose we are studying a phenomenon involving several quan-
tities ay, ag, . . ., a; that vary over time. Therefore, we will have
different values for them in each period, n: ay p, a2, ..., apy. It
we arrange the value of the quantities in each period as a column
vector, we have

a1n
Pn — a2.,n
Qf.n
Thus we have a list of k-tuples, Fy, P, ..., P,, which provide

the information of the phenomenon in each period.

In numerous situations we can calculate these tuples using a
formula of the type

P, =A". P,

where A is a square matrix of order k called the transition
matrix.

Consequently, the fundamental elements of these models are:

e The model will describe the situation of a certain phe-
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nomenon in successive periods. We will know the ini-
tial values which we will collect in a vector By and call
Py, P, P3, in general P, the vectors corresponding to
the following periods.

e We will have a transition matrix, A, which governs the
changes from one period to the next according to the
matrix equations

Poo1=AP, and P,=A'P,.

Studying the trend involves determining the future behavior
of a model of this type, which ultimately means calculating or
studying in some way the value of

APy
for large values of k

lim A*P,.

k—00
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Example 9. Suppose that in a certain commercial sector three
companies compete, which we will call A, B and C. From one
year to the next,

Customers | Customers | Customers
of A of B of C
Switch A 80% 10% 10%
Switch B 10% 60% 20%
Switch C 10% 30% 70%

Suppose also that in the year the study began, company A had
210 customers, B had 190 and C, 320.

Assuming that year £ = 0 is the year in which the study of
the customers of the three companies began, we will call:

e A; = customers in company A after k years.
e B, = customers in company B after k years.

e ('}, = customers in company C after k years.

The information for each year will be grouped in a column vector

Ay
Bj,
Ch

27
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According to the problem data

210
FPy= 1190
320

Applying the transition table,

o A1 = 80% of Ar+10% of Br+10% of O},

customers in A in year k + 1

= 0.84; +0.1B;, + 0.1C,.

o By, = 10% of Ap4+60% of Bp+20% of O}

customers in B in year k + 1

= 0.1A; + 0.6By}, + 0.2C,.

e (11 = 10% of Ap+30% of Bp+70% of O}

customers in C in year k + 1

= 0.1A;, + 0.3B;. + 0.7C}.
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Wusing the definition of matrix product, it is easy to realize
that

0.84; 4+ 0.1B; + 0.1C}, 0.8 0.1 0.1 A
P..1=101A4;,4+0.6B;4+02C, | =101 0.6 02| - [ B
0.1A4; +0.3B, + 0.7C}, 0.1 0.3 0.7 Cl
0.8 0.1 0.1
=10.1 06 0.2] - P,
0.1 0.3 0.7
0.8 0.1 0.1
Denoting A= 10.1 0.6 0.2 |,
0.1 0.3 0.7
Ppi1 = AP,
We therefore have,
P, = AF,
P, = AP
P, = AP
P, = AP;
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Then, if we want to calculate P
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Then, if we want to calculate P

P, = AP,
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Then, if we want to calculate P

P, = AP,
P, = AP

32



Then, if we want to calculate P

P = AP,
P, = A(APR)
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Then, if we want to calculate P

P = AP,
P, = (AA)PR,
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Then, if we want to calculate P

P, = AR
P, = (AA)P) = A*R
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Then, if we want to calculate P

P, = AR
P, = (AA)P) = A*R
P, = AP,
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Then, if we want to calculate P

P, = AR
P, = (AA)P) = A*R
Py = A(A*PR)
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Then, if we want to calculate P

P, = AR
P, = (AA)P) = A*R
Py = (AA*)P,
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Then, if we want to calculate P

P, = AR
P, = (AA)P) = A*R
Py = (AA*)P) = AP,
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Then, if we want to calculate P
P, = AF,
P, = (AA)P) = A*R
Py = (AA*)P) = AP,
P, = AP;
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Then, if we want to calculate P

P, = AR

P, = (AA)P) = A*R
Py = (AA*)P) = AP,
P, = A(A’PR)

41



Then, if we want to calculate P

P, = AR

P, = (AA)P) = A*R
Py = (AA*)P) = AP,
P, = (AA®)P,
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Then, if we want to calculate P

P, = AR

P, = (AA)P) = A*R
Py = (AA*)P) = AP,
P, = (AA%)P) = AP,
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Then, if we want to calculate P

P, = AR

P, = (AA)P) = A*R
Py = (AA*)P) = AP,
P, = (AA%)P) = AP,

Therefore, in general,

P, = A"Py .
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Then, if we want to calculate P

P = AP,
P, =

Therefore, in general,

P, = A"Py .

The matrix A regulates the step from one year to the next and
is the transition matrix for this problem.
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Since we know the initial distribution of customers, Fy, we can
easily calculate the distribution in successive years. To do this,
we compute several powers of A:

0.8 0.1 0.1 0.8 0.1 0.1

A°=AA = |0.10602] (010602
0.1 0.3 0.7/ \0.1 0.3 0.7
0.66 0.17 0.17
= | 0.16 0.43 0.27
0.18 0.4 0.56
0.8 0.1 0.1\ /0.66 0.17 0.17
A3 =AA%> = | 0.1 06 02] |0.16 0.43 0.27
0.1 0.3 0.7/ \0.18 0.4 0.56
0.562 0.219 0.219
= [ 0.198 0.355 0.291
0.24 0.426 0.49
0.8 0.1 0.1\ /0.562 0.219 0.219
At =A4° = 0.1 0.6 0.2] |0.198 0.355 0.291
0.1 0.3 0.7 0.24 0.426 0.49
0.4934 0.2533 0.2533
= | 0.223 0.3201 0.2945
0.2836 0.4266 0.4522
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Using these calculations with equation (9) we have that

0.8 0.1 0.1\ /210 219
P=AP, = |0.10602] [190]| = [ 199
0.1 0.3 0.7/ \320 302
0.66 0.17 0.17\ /210 295.3
P,=A*’Py = [0.16 0.43 027 ] [ 190 | = | 201.7 | .
0.18 0.4 0.56/ \320 293
0.562 0.219 0.219\ /210 229.71
P, = A’Py = | 0.198 0.355 0.291 190 | = | 202.15
0.24 0.426 0.49 320 288.14
0.4934 0.2533 0.2533\ /210 232.797
P,=A*P, = | 0.223 0.3201 0.2945 | [ 190 | = [ 201.889
0.2836 0.4266 0.4522/ \ 320 285.314

47



On the other hand, once this model is formulated, several ques-
tions arise to be solved:

a) Is it possible to study the future trend in the distri-
bution of customers?

b) Do equilibrium distributions exist?
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In fact, the answers to the questions posed at the end of the
previous example are the eigenvalues and eigenvectors of the ma-
trix. Let’s see next how to calculate them.
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Example 10. Let us calculate all eigenvalues and eigenvectors
of the matrix

0.8 0.1 0.1
A=10.10.6 0.2
0.1 0.3 0.7
We start by calculating the characteristic polynomial:
A= A5| =
0.8 0.1 0.1 100 0.8—X 0.1 0.1
0.1 06 021 =AX|1010]|= 0.1 06—X 0.2
0.1 0.3 0.7 001 0.1 0.3  0.7— A,
= (0.8 = A)(0.6 = A)(0.7—A)4+0.1-03-0.1+0.1-0.2-0.1

—(0.1(0.6 = A)0.1+0.3-0.2(0.8 — A) + 0.1 - 0.1(0.7 — X))
= X\ 4+ 2.10% — 1.38\ + 0.28.

This last expression is the characteristic polynomial of the matrix
A . The characteristic equation of A is

A 2.10% — 1.38)\ + 0.28 = 0.
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Let us solve the characteristic equation. If we consider that we
already know that A = 1 is an eigenvalue,

-1 21 —1.38 0.28
1 -1 1.1 —0.28,
-1 11 -028 [0

However, the coeflicients we obtain in the last line of the previous
Ruffini division (—1, 1.1 and —0.28) indicate that the equation

left to solve is
224110 =028=0

and this is a second-degree equation that we can solve directly
by applying the corresponding formula to obtain

—1.1+4/112—4-(=1)-(=0.28) [ =0.4
A= :
2-(=1) = 0.7
so finally, the three solutions of the characteristic equation are,
A=1
A=04 .

A=0.7
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Let us calculate the eigenspaces corresponding to each of the
three eigenvalues:

e The eigenspace associated with A = 1 is the vector subspace
with implicit equations

x 0

Vi=(A-1L) [y | =10

z 0
—0.2 0.1 0.1 x 0
=Vi=1| 01 —-04 0.2 y|l =10
0.1 0.3 —-0.3 z 0

Solving the system, it is easy to check that a basis for this
subspace is By = {(6,5,7)}.

e For A = 0.4 the eigenspace is the vector subspace

T 0
z
0.4 0.1 0.1 x 0
= V4= 10.102 0.2 Y 0
0.1 0.3 0.3 Z 0

A basis for this subspace is By4 = {(0, —
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e For A = 0.7 the eigenspace is the vector subspace

T 0

0.1 0.3

0.1 0.1 0.1 x 0
= V7 = 01—0102 Y 0
Z 0
A basis for this last subspace is BO r=1{(-3,1,2)}
Part 1) of Property 4 guarantees that by combining the
elements of By, By4 and By; we obtain a set of independent

vectors
B = {(6, D, 7), (O, —1, 1), (—3, 1, 2)}

Since three independent vectors in R? form a basis, B is a ba-
sis formed by eigenvectors associated, in that order, with the
eigenvalues A = 1, A = 0.4 and A = 0.7. Therefore, the initial
matrix, A, is diagonalizable with change-of-basis matrix C' and
diagonalization D given by

6 0 —3 1 0 0
C=|5-11], D=1[004 0
71 2 00 0.7
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2.1 The Power Method

Suppose we want to perform the calculation
AP,

for some matrix A € M,,, the initial data n-tuple F, and k£ €
N. Assume that the matrix A is diagonalizable. Then, we can
calculate for A a basis of eigenvectors:

Eigenvector | Associated Eigenvalue
U1 A1
U2 A2
Un An
Since the eigenvectors vy, vs, ..., v, form a basis of R", any n-

tuple can be obtained as a linear combination of them. In par-
ticular, the n-tuple Py can be written in the form

By = avy + avvg + - - - + v,

for certain coefficients o, am, . . ., o, € R that can be calculated
by solving the corresponding system.
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APy = AF (101 + Ve + - - - + auUy)
= Araqv; + A¥agvy + - - + AFayu,
= ay A*v; + apAfvy + - - + o, A,
But
Afp, = )\]fvl, Afpy = )\gvg, . Ary, = )\fzvn
so that
AF Py = oy Akv! +0vo Akvg 4+t ay, AR,
)\]1%1 /\12%2 MNew

— 041)\]1%1 + ag)\gvg + e+ Ozn)\]fbvn.

= AFP, = oqA’fvl -+ 042)\7502 + -4 ozn)\ﬁvn .

As we have already commented, we see how the calculation of
the matrix power A* reduces to the simpler calculation of the
numerical powers A%, A5, ..., \F.
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Example 11. Suppose three investment groups, which we will
call A, B and C, manage most of their capital themselves but
diversify their investment by allocating a percentage to one of
the other two groups. From one year to the next, they keep the
investment percentages fixed according to the following table:

invests in

A B | C
A 190% | 30% | 30%
B | 10% | 70% | 20%
C 10% | 10% | 60%

Group

Suppose that initially the capital in each group is, in millions
of euros, as follows:

Group A | Group B | Group C
Capital 17 27 21

Let us study the capital in subsequent years. To do this, we will
set up a matrix model for this problem.
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We will start by calling

Ay 17
Po=|By| =127
Ch 21
Then,
A 0.9 0.1 0.1 Ay
Br1 | =103 07011 - | B
Cri1 0.3 0.2 0.6 Cr
from which, as we have seen in previous examples, we arrive at
Ay 0.9 0.1 0.1\ " /A,
B.|l=1030701]1 -|DBgy]. (1)
Cr 0.3 0.2 0.6 Co
[f we denote
Ay 0.9 0.1 0.1
P.= | B and A= 103 0.7 0.1
Cr 0.3 0.2 0.6

abbreviatedly the matrix equation (1) is written as

P, = AP,
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The characteristic polynomial of A is

09—X 0.1 0.1
p(A) =|A—= N3] = 0.3 07—X 0.1
0.3 0.2 0.6—X\

— M+ 292\ —1.51\+0.33.

The characteristic equation is:
A° —2.2)% + 1.51\ — 0.33 = 0.

However, it is easy to check that the sum of all rows of A is equal
to 1.1 so A =1.11s an eigenvalue of A.

1 =22 1.51 —0.33
1.1 1.1 —1.21 0.33
1 -1.1 03 [0

[t remains to solve
1- XM —=1.124+03=0.

But this last one is a second-degree equation that can be solved
directly, obtaining as a result

1.1++v1.12—4-1-0.3
A\ = v ] = A=0.6 and X\ =0.5.

In this way we have that the matrix A has the following eigen-
values

M =11, X=06 A3 =05.

58



Let us next calculate the eigenvectors corresponding to the
calculated eigenvalues:

e Eigenvectors associated with A\; = 1.1: The eigenvec-
tors associated with Ay = 1.1 form the eigenspace V71 which
has implicit equations

T 0

Viin=(A—-11L)-{y]| =10

Z 0
—0.2 0.1 x

=Vii=1 0.3 —04 01 y | =
0.3 —0.9 Z

It is easy to check that V1 1 = ((1,1,1)) and therefore By 1 =
{(1,1,1)} is a basis for V7 1.
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Let us next calculate the eigenvectors corresponding to the
calculated eigenvalues:

e Eigenvectors associated with Ay = 0.6: The eigenvec-
tors associated with Ay = 0.6 form the eigenspace Vi ¢ which
has implicit equations

x 0

z 0
0.3 0.1 0.1 x 0
= Vg=1030101]-ly] =10
0.3 0.2 0 Z 0

In this case Vo = ((—2,3,3)) and Byg = {(—2,3,3)} is a
basis for Vj¢.
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Let us next calculate the eigenvectors corresponding to the
calculated eigenvalues:

e Eigenvectors associated with A3 = 0.5: The eigenvec-
tors associated with A3 = 0.5 form the eigenspace V{5 which
has implicit equations

X 0
2z 0
0.4 0.1 0.1 x 0
= Vs;=1030201]-|y 0
0.3 0.2 0.1 2 0
Now Vo5 = ((1,1,=5)) and By = {(1,1,—5)} is a basis of

Vos.
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we obtain a basis of eigenvectors of A formed by the vectors

v1 = (1,1, 1) associated with the eigenvalue A; = 1.1,
vy = (—2,3,3) associated with the eigenvalue Ay = 0.6,
v3 = (1,1, —5) associated with the eigenvalue A3 = 0.5.

Let us express Py using this basis:

17 1 —2
Py = ayvi+asvetasvs = |27 =a1 | 1 |4+ | 3 | +as
21 1 3
17 a1 — 2009 + Q3
= |27 = | a;+3as + a3
21 a1 + 3ag — dag

(11—2()42+CX3: 17
= < ap + 3oy + az =27
a1 + 3ay — dbag = 21
and solving this system we obtain aq = 20, as = 2, a3 = 1 and
therefore
17 1 —2 1
By =200142v94+v3= |27 ]| =20 | 1 | +2 3 |1+ 1
21 1 3 —5
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Then,
AR P, — 204k koo k k k
= v1+2A00+ A%vs = 20-1.1%01 +2-0.6"v9 +0.5" v

or, equivalently,

0.9 0.1 0.1\ " /17 1 _9 1

030701 -(27] =201.1% [ 1])+206"| 3 |+05F| 1
0.3 0.2 0.6 21 1 3 5
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Now, by means of the expressions we have obtained, we can
calculate the capital in each group after any number of years.
For example:

e After £k = 3 years, the capitals in each group will be de-
termined by the tuple P; = AP, which can be calculated

Via
Py= APy =20-1.1%0, + 2 0.605 + 0.5%03
= 2662’01 + 2 - 0432’02 + 0.1251)3
1 ~9 1 25.881
—2662 (1] +0432| 3 | +0.125( 1 | = | 28.041

1 3 —5 27.291
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Now, by means of the expressions we have obtained, we can
calculate the capital in each group after any number of years.
For example:

e After £ = 10 years, the capitals in each group will be de-
termined by the tuple Py = AP, which we can calculate

asS.
Py=A"Py=20-1.1% +2- 0.6y + 0.5
= 51.8748v; + 2 - 0.0120932v5 + 0.000976563v5
1 —9 1
—51.8748 [ 1| +0.0120932 | 3 | + 0.000976563 | 1
1 3 -5
51.8516
— | 51.9121
51.9062

Thus, after ten years, the capital in group A rises to 51.8516
million euros, in group B is 51.9121 million and in group C
51.9062 million.
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[t
By = a1 + avvg + - - - + vy
then
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We will now focus on the study of the trend. We assume then
that we continue with a matrix model

P, = A*P,,

AFpy = 041)\’1%1 + 042)\’2“02 + -+ ozn)\ﬁvn.
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We will now focus on the study of the trend. We assume then
that we continue with a matrix model

P, = A*P,,

Akpo = OzlA_]f?Jl + 042)\_]5712 + -+ Oén)\_ivn.
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Definition 12. An eigenvalue of a matrix A is said to be the
dominant eigenvalue if its absolute value is greater than that of
the rest of the eigenvalues of the matrix. An eigenvector asso-
ciated with the dominant eigenvalue is said to be a dominant
elgenvector.

Examples 13.
1) The eigenvalues of the matrix

20 —40 =31
A=12 1 =2
1§ =36 =24

are \; = —6, Ay = b and A3 = 3. If we calculate the absolute
value of these eigenvalues we have that

M =6, Do =5 M| =3.

Therefore, Ay = —6 is the dominant eigenvalue of the matrix
A. Tt is possible to calculate that V_g = ((1,0,1)). The vector
(1,0,1) is a dominant eigenvector for the matrix A.
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2) The eigenvalues of the matrix

25 —38 —31
A=15 -4 -5
14 =28 =20

are Ay = —06, Ay = 6 and A3 = 1. The corresponding absolute
values are

A =6, |A] =6, |X]=1.
The absolute value of the first two eigenvalues coincides. In that
case none of the eigenvalues has an absolute value strictly greater
than that of all the others and the matrix has no dominant eigen-
value.
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Suppose that in the identity (2) the eigenvalue Ay is the dom-
inant eigenvalue of the matrix A and that

[Arl > Ao 2 [As] = - = | A

Consequently, we will have that v is a dominant eigenvector of
A. Taking the dominant eigenvalue as a common factor on the

right-hand side of (2) we have that

Arpy = M do\' M
0= A1 | 11 + g | — Vo+ -+, | — Uy | -
)\1 >\1

Since Aj is the dominant eigenvalue it is clear that
A2 An
At A
but for large values of £ it is easy to check that if a number » € R

has an absolute value less than one (|r| < 1) then r* ~ 0. In
this way when k is large,

A\ A\ A\
— ]| =0, — | =0, — | =0
A1 A A1

and therefore when k becomes large we will have that

A\ " A\
AkP():)\lf a1V + Q9 ()\_2) Vo + -+ ay (A—n> Un,
H,\J%_/ H,\J%_/

<1

9 o e ey
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= | APy ~ )\’fozlvl .

From this we draw the following conclusions:

e For large values of k, the behavior of A* By depends solely on
the dominant eigenvalue and the dominant eigenvector.

e Depending on the value of Aq, the expression a; Ao, will have
one behavior or another. Specifically, we have:

—If [\i] < 1, for large values of k we will have that A} ~ 0
and in that case
ozlA]ffvl ~ (.
P, in successive periods tend to vanish.

—If |A\i| > 1, for large values of k& we will have that \* ~
+o00 and then
o My & +00

which means that the values in successive periods will grow
or decrease without limit.

— It Ay =1, for large values of k£ we will have that
041)\]{:?}1 —= (1

and the data tuples in successive periods will tend to a
constant equilibrium value given by aw;.
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e We have that for large values of k, the data in period k, P,
can be calculated approximately by

P, = APy ~ 041)\]1%1.

In many situations it will be of interest to calculate the vector
of percentages of P and then we will have that

vector of percentages of P

~ vector of percentages of 041)\]1“7}1.

But,
vector of percentages of 041)\lf 1
N =~
number vector
= vector of percentages of v;
so that

percentages of P, ~ vector of percentages of v;.
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Examples 14.

1) In Example 11 we were studying the problem of three fi-
nancial groups that invest according to a certain fixed annual
investment table that led to a matrix model for the calculation
of the capitals of the three groups in successive periods of the

form
k

0.9 0.1 0.1 17
P.=1030701] -]27
0.3 0.2 0.6 21

=A =F)

We saw that the transition matrix A has eigenvalues
M =11, X=0.6, A3=0.5

so the dominant eigenvalue is Ay = 1.1 and the corresponding
dominant eigenvector is v; = (1,1,1). On the other hand, the
expression of the initial data tuple F, in the basis of eigenvectors
V1, U2 and vs calculated on page 61 is

Py =20 vy + 2vy 4 v3.

:Ql
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Recalling the reasoning from page 71 we have that:

e For large values of k we have that
P, ~ 20 - 1.1%0,.
For example:

— After k = 3 years, the capital tuple, P3, can be calculated
approximately as

1 26.62
Py~20-1.1°0,=2662 1] = [ 26.62
1 26.62

— After k = 10 years, the capital tuple, Py, can be calcu-
lated approximately as

1 51.8748
Poy=~20-1.1%, =51.8748 [ 1 | = | 51.8748
1 51.8748

It can be checked how even for not excessively high values
of k the approximations provide results very similar to the
exact data we obtained on page 65.
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e Since the dominant eigenvalue satisfies |A\;| = [1.1] = 1.1 >
1, we have that

1
P.~ a;1.1%;, =20-1.1" | 1
1

and the capitals of the three groups grow without limit during
the course of successive years.

e The percentages represented by the capitals for year k£, when
k is sufficiently large, will be approximately the same as those
represented by the dominant eigenvector v;. The vector of
percentages of vy is

1 33.3

100 o
[ 1] = [ 333
Tirl\y 33.3

Therefore, the future trend is that:

33.3 of the total capital will belong to group A.
33.3 of the total capital will belong to group B.
33.3 of the total capital will belong to group C.

[t is observed that the trend, after a sufficiently large number
of years, is that the three groups accumulate capital of the
same amount.
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2) If we analyze Example 10 we have that the eigenvalues of
the transition matrix are
M=1, X=04, N=0.T7.

Therefore the dominant eigenvalue is A\; = 1. We had also cal-
culated the eigenvectors associated with these eigenvalues; in
particular, we saw that (6,5, 7) is an eigenvector associated with
the dominant eigenvalue A\; = 1 so v; = (6,5,7) is a dominant
eigenvector. If we also consider the eigenvectors associated with
the other two eigenvalues we obtain the following basis of eigen-
vectors:

B ={(6,5,7),(0,—1,1),(—=3,1,2)}.
When we first formulated this example we saw that the initial
data were: 120 customers in company A, 190 in B and 320 in C.
This corresponded to an initial vector

210
Py= 1190
320
[f we calculate the coordinates of F in B we obtain the following
exXpression:
Py = 35v1 + 30vy + 15ws.
Then we have that the situation after k periods is approximated
by
Akpo ~ 30 - 1k’l}1 = 352}1.

7



Since the dominant eigenvalue is equal to one, we have a sta-
bility situation in which the distribution of the companies will
stabilize around the limiting value 35v; = 35(6,5,7). On page
7?7 we saw that this vector represented the percentages

(33.3%, 27.7%, 38.8%)
and the distribution we can expect for the future will be:
e Customers in company A = 33.3% of the total.

e Customers in company B = 27.7% of the total.
e Customers in company C = 38.8% of the total.
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