
Chapter 6.
Diagonalization.



1 Diagonalization Process

Most calculations are simplified if the matrices are diagonal.

1.


a1

a2
. . .

an

 ·

b1
b2

. . .

bn


=


a1 · b1

a2 · b2
. . .

an · bn

.

2.

∣∣∣∣∣∣∣∣

a1

a2
. . .

an


∣∣∣∣∣∣∣∣ = a1 · a2 · · · · · an.

3.


a1

a2
. . .

an


−1

=


a−11

a−12
. . .

a−1

.
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4.


a1

a2
. . .

an


k

=


ak1

ak2
. . .

akn

.
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It will therefore be interesting to have methods that allow ob-
taining diagonal forms for any matrix.

A︸︷︷︸
Any matrix

−−−−−−−−→
diagonalization

D︸︷︷︸
Diagonal matrix

,

in such a way that we can recover for A the operations that we
perform more easily on D.

Definition 1. Given A ∈ Mn, we say it is a diagonalizable
matrix if there exists C ∈Mn invertible such that the matrix

D = C−1 · A · C

is a diagonal matrix. In such a case, we say that the matrix
C diagonalizes the matrix A and we call it the change-of-basis
matrix.
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Properties 2. Let A ∈Mn be a diagonalizable matrix such
that

D = C−1 · A · C,
where C,D ∈ Mn, with D being a diagonal matrix and C
an invertible matrix. Then:

i) |A| = |D|.
ii) An = C ·Dn ·C−1, n ∈ N. In particular, if A is invertible

this property is also valid for n ∈ Z, n < 0.
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Let A =

 4 −4 2
−3 5 −2
−9 12 −5

.
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Let A =

 4 −4 2
−3 5 −2
−9 12 −5

.

Is v =

4
3
0

 an eigenvector?
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Let A =

 4 −4 2
−3 5 −2
−9 12 −5

.

Is v =

4
3
0

 an eigenvector?

A

4
3
0

 = λ

4
3
0



7



Let A =

 4 −4 2
−3 5 −2
−9 12 −5

.

Is v =

4
3
0

 an eigenvector?

A

4
3
0

 = λ

4
3
0


Is λ = 3 an eigenvalue?
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Let A =

 4 −4 2
−3 5 −2
−9 12 −5

.

Is v =

4
3
0

 an eigenvector?

A

4
3
0

 = λ

4
3
0


Is λ = 3 an eigenvalue?

|A− λI3| = 2− 5λ + 4λ2 − λ3
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Given a matrix A ∈Mn×n, to diagonalize it we must find the
change-of-basis matrix C and the diagonalization D. For this,
we will make the following considerations:

� We will assume that the column vectors of the change-of-basis
matrix C are v1, . . . , vn ∈ Rn, that is,

C = (v1|v2| . . . |vn),

and that

D =


λ1

λ2
. . .

λn

 .

� The matrix C must have an inverse and therefore

det(C) 6= 0⇔ {v1, v2, . . . , vn} are all of them independent.
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� It is easy to verify that

A · C = A · (v1|v2| . . . |vn) = (Av1|Av2| . . . |Avn)

and also that

C ·D = (λ1v1|λ2v2| . . . |λnvn).

� If the matrix C diagonalizes A with D being the diagonal-
ization then, taking into account the previous point,

D = C−1 · A · C ⇔ A · C = C ·D

⇔ (Av1|Av2| . . . |Avn) = (λ1v1|λ2v2| . . . |λnvn)

⇔


Av1 = λ1v1
Av2 = λ2v2

...
Avn = λnvn
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Therefore, if we find a basis of vectors of Rn,

{v1, v2, . . . , vn},

satisfying this last property then the matrix A is diagonalizable
with C = (v1|v2| . . . |vn) and

D =


λ1

λ2
. . .

λn

 .
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Definition 3. Given A ∈Mn we call:

� eigenvalue of A any real number λ ∈ R such that there
exists some non-zero vector, v ∈ Rn, such that

A · v = λv.

� eigenvector of A associated with the eigenvalue λ
any vector v ∈ Rn such that

A · v = λv.

� eigenspace of A associated with the eigenvalue λ
the set of all eigenvectors of A associated with the eigenvalue
λ,

Vλ = {v ∈ Rn/A · v = λv}.
Such set Vλ is a vector subspace of Rn.

The concepts of eigenvector and eigenvalue have important
interpretations in different iterative matrix models where they
determine the stability positions of a system.
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To check if λ is an eigenvalue of A we must find a non-zero
vector, v ∈ Rn, such that

A · v = λv.

Is v =

4
3
0

 an eigenvector?

A

4
3
0

 = λ

4
3
0


Is λ = 3 an eigenvalue?

|A− λI3| = 2− 5λ + 4λ2 − λ3
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To check if λ is an eigenvalue of A we must find a non-zero
vector, v ∈ Rn, such that

A · v = λv.

Now,

A · v = λv ⇔ A · v − λv = 0⇔ A · v − λIn · v = 0

⇔ (A− λIn) · v = 0,

A

4
3
0

 = λ

4
3
0


Is λ = 3 an eigenvalue?

|A− λI3| = 2− 5λ + 4λ2 − λ3
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To check if λ is an eigenvalue of A we must find a non-zero
vector, v ∈ Rn, such that

A · v = λv.

Now,

A · v = λv ⇔ A · v − λv = 0⇔ A · v − λIn · v = 0

⇔ (A− λIn) · v = 0,

Therefore, if we call A = A− λIn, what we must find is a non-
zero vector v = (x1, x2, . . . , xn) ∈ Rn such that

A ·


x1
x2
...
xn

 =


0
0
...
0

 .

Is λ = 3 an eigenvalue?

|A− λI3| = 2− 5λ + 4λ2 − λ3
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To check if λ is an eigenvalue of A we must find a non-zero
vector, v ∈ Rn, such that

A · v = λv.

Now,

A · v = λv ⇔ A · v − λv = 0⇔ A · v − λIn · v = 0

⇔ (A− λIn) · v = 0,

Therefore, if we call A = A− λIn, what we must find is a non-
zero vector v = (x1, x2, . . . , xn) ∈ Rn such that

A ·


x1
x2
...
xn

 =


0
0
...
0

 .

λ is an eigenvalue of A⇔ ∃ v ∈ Rn, v 6= 0, such that A·v = λv

⇔ A ·


x1
x2
...
xn

 = 0 is indeterminate⇔ |A| = 0

⇔ |A− λIn| = 0.

|A− λI3| = 2− 5λ + 4λ2 − λ3
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Let Vλ be the set of all eigenvectors of A associated with the
eigenvalue λ. From all the previous reasoning, it follows that

Vλ = {v ∈ Rn/A · v = λv}

= {v = (x1, x2, . . . , xn) ∈ Rn/(A− λIn) ·


x1
x2
...
xn

 =


0
0
...
0

}
so Vλ is a vector subspace with implicit equations given in matrix
form by

Vλ ≡ (A− λIn) ·


x1
x2
...
xn

 =


0
0
...
0

 .

This is the basic technique for calculating eigenvalues and
eigenvectors.
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Property 4. Given A ∈Mn:

i) It holds that

λ ∈ R is an eigenvalue of A⇔ |A− λIn| = 0

and, if λ ∈ R is an eigenvalue, then Vλ is the vector
subspace of Rn given by

Vλ ≡ (A− λIn) ·


x1
x2
...
xn

 =


0
0
...
0


and therefore

dim(Vλ) = n− rango(A− λIn).

ii) Suppose that λ1, λ2, . . . , λk ∈ R are eigenvalues of A dis-
tinct from each other. Then, if B1 is a basis of Vλ1, B2 is
a basis of Vλ2,. . . , Bk is a basis of Vλk, we have that

H = B1 ∪B2 ∪ · · · ∪Bk

is an independent set.

iii) If λ ∈ R is an eigenvalue of the matrix A and v ∈ Rn is
an eigenvector of A associated with λ then

Akv = λkv.
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Definition 5. Given A ∈Mn we call characteristic polynomial
of the matrix A the polynomial

p(λ) = |A− λIn| ∈ Pn(λ)

and we call characteristic equation of the matrix A the equation

p(λ) = 0.

Remark. From all the above, it follows that:

� The eigenvalues of a matrix, A ∈ Mn, are the solutions of
its characteristic equation.

� A matrix can be diagonalized if we find a basis formed exclu-
sively by eigenvectors.
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We may encounter the following problems that would prevent
a matrix from being diagonalizable:

1. The matrix either has no eigenvalues or has an insufficient
number of them.

2. The eigenvectors of the matrix do not allow forming a basis.

Definition 6.

i) Given a polynomial, p(λ) ∈ Pn(λ), we say that λ0 ∈ R is a
zero of multiplicity k of p(λ) if we can express p(λ) in the
form

p(λ) = q(λ) · (λ− λ0)k,
where q(λ) ∈ Pn−k(λ) verifies that q(λ0) 6= 0.

ii) Given A ∈ Mn and λ ∈ R an eigenvalue of A we say that
the algebraic multiplicity of λ is k if λ is a zero of multiplicity
k of the characteristic polynomial of the matrix A.

iii) Given A ∈ Mn and λ ∈ R an eigenvalue of A, we call
geometric multiplicity of λ the dimension of the eigenspace
associated with λ, Vλ, that is, dim(Vλ).
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Property 7. Let A ∈ Mn whose eigenvalues are λ1, λ2,
. . . , λk, such that ∀i = 1, . . . , k{

ni is the algebraic multiplicity of λi.
mi is the geometric multiplicity of λi.

.

Then it holds that

1. n1 + n2 + · · · + nk ≤ n.

2. 1 ≤ mi ≤ ni, ∀i = 1, . . . , k.

3. A is diagonalizable ⇔
{
n1 + n2 + · · · + nk = n.
mi = ni, ∀i = 1, . . . , k.

.
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Property 8.

i) If A ∈Mn is a diagonal matrix,

A =


λ1

λ2
. . .

λn

 ,

then A is diagonalizable, and it holds that the matrix In
diagonalizes the matrix A, the canonical basis Bc of Rn

is a basis of eigenvectors of A, and its eigenvalues are
λ1, λ2, . . . , λn ∈ R such that the number of times each
eigenvalue is repeated indicates its algebraic and geomet-
ric multiplicity.

ii) Every symmetric matrix is diagonalizable.

iii) If A ∈Mn has n eigenvalues, all of them distinct, then
A is diagonalizable.

iv) If the columns or the rows of A ∈ Mn all sum to the
same number r ∈ R, then λ = r is an eigenvalue of A.

v) The characteristic polynomial of A ∈M2 is

p(λ) = λ2 − trace(A)λ + |A|.
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vi) The characteristic polynomial of A =

a11 a12 a13a21 a22 a23
a31 a32 a33

 ∈
M3 is

p(λ) = −λ3 + trace(A)λ2

−
(∣∣∣∣(a11 a12a21 a22

)∣∣∣∣ +

∣∣∣∣(a22 a23a32 a33

)∣∣∣∣ +

∣∣∣∣(a11 a13a31 a33

)∣∣∣∣)λ
+|A|.
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2 Study of Trends in Iterative Processes

The product and power of matrices are fundamental in formu-
lating the most important matrix models.

Suppose we are studying a phenomenon involving several quan-
tities a1, a2, . . . , ak that vary over time. Therefore, we will have
different values for them in each period, n: a1,n, a2,n, . . . , ak,n. If
we arrange the value of the quantities in each period as a column
vector, we have

Pn =


a1,n
a2,n

...
ak,n

 .

Thus we have a list of k-tuples, P0, P1, . . . , Pn, which provide
the information of the phenomenon in each period.

In numerous situations we can calculate these tuples using a
formula of the type

Pn = An · P0,

where A is a square matrix of order k called the transition
matrix.

Consequently, the fundamental elements of these models are:

� The model will describe the situation of a certain phe-
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nomenon in successive periods. We will know the ini-
tial values which we will collect in a vector P0 and call
P1, P2, P3, in general Pk, the vectors corresponding to
the following periods.

� We will have a transition matrix, A, which governs the
changes from one period to the next according to the
matrix equations

Pk+1 = APk and Pk = AkP0.

Studying the trend involves determining the future behavior
of a model of this type, which ultimately means calculating or
studying in some way the value of

AkP0

for large values of k
lim
k→∞

AkP0.
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Example 9. Suppose that in a certain commercial sector three
companies compete, which we will call A, B and C. From one
year to the next,

Customers Customers Customers
of A of B of C

Switch A 80% 10% 10%
Switch B 10% 60% 20%
Switch C 10% 30% 70%

Suppose also that in the year the study began, company A had
210 customers, B had 190 and C, 320.

Assuming that year k = 0 is the year in which the study of
the customers of the three companies began, we will call:

� Ak = customers in company A after k years.

� Bk = customers in company B after k years.

� Ck = customers in company C after k years.

The information for each year will be grouped in a column vector
:

Pk =

Ak

Bk

Ck

 .
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According to the problem data

P0 =

210
190
320

 .

Applying the transition table,

� Ak+1︸︷︷︸
customers in A in year k + 1

= 80% of Ak+10% of Bk+10% of Ck

= 0.8Ak + 0.1Bk + 0.1Ck.

� Bk+1︸︷︷︸
customers in B in year k + 1

= 10% of Ak+60% of Bk+20% of Ck

= 0.1Ak + 0.6Bk + 0.2Ck.

� Ck+1︸︷︷︸
customers in C in year k + 1

= 10% of Ak+30% of Bk+70% of Ck

= 0.1Ak + 0.3Bk + 0.7Ck
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Wusing the definition of matrix product, it is easy to realize
that

Pk+1 =

0.8Ak + 0.1Bk + 0.1Ck
0.1Ak + 0.6Bk + 0.2Ck
0.1Ak + 0.3Bk + 0.7Ck

 =

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7

 ·
Ak

Bk

Ck


=

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7

 · Pk.
Denoting A =

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7

,

Pk+1 = APk.

We therefore have,

P1 = AP0

P2 = AP1

P3 = AP2

P4 = AP3

etc.
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Then, if we want to calculate P4
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Then, if we want to calculate P4

P1 = AP0
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Then, if we want to calculate P4

P1 = AP0

P2 = AP1
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Then, if we want to calculate P4

P1 = AP0

P2 = A(AP0)
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Then, if we want to calculate P4

P1 = AP0

P2 = (AA)P0
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Then, if we want to calculate P4

P1 = AP0

P2 = (AA)P0 = A2P0
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Then, if we want to calculate P4

P1 = AP0

P2 = (AA)P0 = A2P0

P3 = AP2
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Then, if we want to calculate P4

P1 = AP0

P2 = (AA)P0 = A2P0

P3 = A(A2P0)
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Then, if we want to calculate P4

P1 = AP0

P2 = (AA)P0 = A2P0

P3 = (AA2)P0
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Then, if we want to calculate P4

P1 = AP0

P2 = (AA)P0 = A2P0

P3 = (AA2)P0 = A3P0
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Then, if we want to calculate P4

P1 = AP0

P2 = (AA)P0 = A2P0

P3 = (AA2)P0 = A3P0

P4 = AP3
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Then, if we want to calculate P4

P1 = AP0

P2 = (AA)P0 = A2P0

P3 = (AA2)P0 = A3P0

P4 = A(A3P0)
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Then, if we want to calculate P4

P1 = AP0

P2 = (AA)P0 = A2P0

P3 = (AA2)P0 = A3P0

P4 = (AA3)P0
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Then, if we want to calculate P4

P1 = AP0

P2 = (AA)P0 = A2P0

P3 = (AA2)P0 = A3P0

P4 = (AA3)P0 = A4P0
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Then, if we want to calculate P4

P1 = AP0

P2 = (AA)P0 = A2P0

P3 = (AA2)P0 = A3P0

P4 = (AA3)P0 = A4P0

Therefore, in general,

Pk = AkP0 .
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Then, if we want to calculate P4

P1 = AP0

P2 = (AA)P0 = A2P0

P3 = (AA2)P0 = A3P0

P4 = (AA3)P0 = A4P0

Therefore, in general,

Pk = AkP0 .

The matrix A regulates the step from one year to the next and
is the transition matrix for this problem.
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Since we know the initial distribution of customers, P0, we can
easily calculate the distribution in successive years. To do this,
we compute several powers of A:

A2 = AA =

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7


=

0.66 0.17 0.17
0.16 0.43 0.27
0.18 0.4 0.56

 .

A3 = AA2 =

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7

0.66 0.17 0.17
0.16 0.43 0.27
0.18 0.4 0.56


=

0.562 0.219 0.219
0.198 0.355 0.291
0.24 0.426 0.49

 .

A4 = AA3 =

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7

0.562 0.219 0.219
0.198 0.355 0.291
0.24 0.426 0.49


=

0.4934 0.2533 0.2533
0.223 0.3201 0.2945
0.2836 0.4266 0.4522

 .
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Using these calculations with equation (9) we have that

P1 = AP0 =

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7

210
190
320

 =

219
199
302

 .

P2 = A2P0 =

0.66 0.17 0.17
0.16 0.43 0.27
0.18 0.4 0.56

210
190
320

 =

225.3
201.7
293

 .

P3 = A3P0 =

0.562 0.219 0.219
0.198 0.355 0.291
0.24 0.426 0.49

210
190
320

 =

229.71
202.15
288.14

 .

P4 = A4P0 =

0.4934 0.2533 0.2533
0.223 0.3201 0.2945
0.2836 0.4266 0.4522

210
190
320

 =

232.797
201.889
285.314

 .
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On the other hand, once this model is formulated, several ques-
tions arise to be solved:

a) Is it possible to study the future trend in the distri-
bution of customers?

b) Do equilibrium distributions exist?
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In fact, the answers to the questions posed at the end of the
previous example are the eigenvalues and eigenvectors of the ma-
trix. Let’s see next how to calculate them.
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Example 10. Let us calculate all eigenvalues and eigenvectors
of the matrix

A =

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7

 .

We start by calculating the characteristic polynomial:

|A− λI3| =∣∣∣∣∣∣
0.8 0.1 0.1

0.1 0.6 0.2
0.1 0.3 0.7

− λ
1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0.8− λ 0.1 0.1

0.1 0.6− λ 0.2
0.1 0.3 0.7− λ

∣∣∣∣∣∣
= (0.8− λ)(0.6− λ)(0.7− λ) + 0.1 · 0.3 · 0.1 + 0.1 · 0.2 · 0.1
−
(
0.1(0.6− λ)0.1 + 0.3 · 0.2(0.8− λ) + 0.1 · 0.1(0.7− λ)

)
= −λ3 + 2.1λ2 − 1.38λ + 0.28.

This last expression is the characteristic polynomial of the matrix
A . The characteristic equation of A is

−λ3 + 2.1λ2 − 1.38λ + 0.28 = 0.
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Let us solve the characteristic equation. If we consider that we
already know that λ = 1 is an eigenvalue,

−1 2.1 −1.38 0.28
1 −1 1.1 −0.28
−1 1.1 −0.28 0

,

However, the coefficients we obtain in the last line of the previous
Ruffini division (−1, 1.1 and −0.28) indicate that the equation
left to solve is

−λ2 + 1.1λ− 0.28 = 0

and this is a second-degree equation that we can solve directly
by applying the corresponding formula to obtain

λ =
−1.1±

√
1.12 − 4 · (−1) · (−0.28)

2 · (−1)

{
= 0.4
= 0.7

,

so finally, the three solutions of the characteristic equation are, λ = 1
λ = 0.4
λ = 0.7

.
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Let us calculate the eigenspaces corresponding to each of the
three eigenvalues:

� The eigenspace associated with λ = 1 is the vector subspace
with implicit equations

V1 ≡ (A− 1I3)

xy
z

 =

0
0
0


⇒ V1 ≡

−0.2 0.1 0.1
0.1 −0.4 0.2
0.1 0.3 −0.3

xy
z

 =

0
0
0

 .

Solving the system, it is easy to check that a basis for this
subspace is B1 = {(6, 5, 7)}.

� For λ = 0.4 the eigenspace is the vector subspace

V0.4 ≡ (A− 0.4I3)

xy
z

 =

0
0
0


⇒ V0.4 ≡

0.4 0.1 0.1
0.1 0.2 0.2
0.1 0.3 0.3

xy
z

 =

0
0
0

 .

A basis for this subspace is B0.4 = {(0,−1, 1)}.
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� For λ = 0.7 the eigenspace is the vector subspace

V0.7 ≡ (A− 0.7I3)

xy
z

 =

0
0
0


⇒ V0.7 ≡

0.1 0.1 0.1
0.1 −0.1 0.2
0.1 0.3 0

xy
z

 =

0
0
0

 .

A basis for this last subspace is B0.7 = {(−3, 1, 2)}.

Part ii) of Property 4 guarantees that by combining the
elements of B1, B0.4 and B0.7 we obtain a set of independent
vectors

B = {(6, 5, 7), (0,−1, 1), (−3, 1, 2)}.
Since three independent vectors in R3 form a basis, B is a ba-
sis formed by eigenvectors associated, in that order, with the
eigenvalues λ = 1, λ = 0.4 and λ = 0.7. Therefore, the initial
matrix, A, is diagonalizable with change-of-basis matrix C and
diagonalization D given by

C =

6 0 −3
5 −1 1
7 1 2

 , D =

1 0 0
0 0.4 0
0 0 0.7

 .
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2.1 The Power Method

Suppose we want to perform the calculation

AkP0

for some matrix A ∈ Mn, the initial data n-tuple P0 and k ∈
N. Assume that the matrix A is diagonalizable. Then, we can
calculate for A a basis of eigenvectors:

Eigenvector Associated Eigenvalue
v1 λ1
v2 λ2
... ...
vn λn

Since the eigenvectors v1, v2, . . . , vn form a basis of Rn, any n-
tuple can be obtained as a linear combination of them. In par-
ticular, the n-tuple P0 can be written in the form

P0 = α1v1 + α2v2 + · · · + αnvn

for certain coefficients α1, α2, . . . , αn ∈ R that can be calculated
by solving the corresponding system.
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AkP0 = Ak (α1v1 + α2v2 + · · · + αnvn)

= Akα1v1 + Akα2v2 + · · · + Akαnvn

= α1A
kv1 + α2A

kv2 + · · · + αnA
kvn.

But

Akv1 = λk1v1, Akv2 = λk2v2, . . . Akvn = λknvn

so that

AkP0 = α1A
kv1︸︷︷︸
λk1v1

+α2A
kv2︸︷︷︸
λk2v2

+ · · · + αnA
kvn︸︷︷︸
λknvn

= α1λ
k
1v1 + α2λ

k
2v2 + · · · + αnλ

k
nvn.

⇒ AkP0 = α1λ
k
1v1 + α2λ

k
2v2 + · · · + αnλ

k
nvn .

As we have already commented, we see how the calculation of
the matrix power Ak reduces to the simpler calculation of the
numerical powers λk1, λ

k
2, . . . , λ

k
n.
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Example 11. Suppose three investment groups, which we will
call A, B and C, manage most of their capital themselves but
diversify their investment by allocating a percentage to one of
the other two groups. From one year to the next, they keep the
investment percentages fixed according to the following table:

invests in
A B C

A 90% 30% 30%
B 10% 70% 20%

G
ro

u
p

C 10% 10% 60%

Suppose that initially the capital in each group is, in millions
of euros, as follows:

Group A Group B Group C
Capital 17 27 21

Let us study the capital in subsequent years. To do this, we will
set up a matrix model for this problem.
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We will start by calling

P0 =

A0

B0

C0

 =

17
27
21

 .

Then, Ak+1

Bk+1

Ck+1

 =

0.9 0.1 0.1
0.3 0.7 0.1
0.3 0.2 0.6

 ·
Ak

Bk

Ck


from which, as we have seen in previous examples, we arrive atAk

Bk

Ck

 =

0.9 0.1 0.1
0.3 0.7 0.1
0.3 0.2 0.6

k

·

A0

B0

C0

 . (1)

If we denote

Pk =

Ak

Bk

Ck

 and A =

0.9 0.1 0.1
0.3 0.7 0.1
0.3 0.2 0.6


abbreviatedly the matrix equation (1) is written as

Pk = AkP0.
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The characteristic polynomial of A is

p(λ) = |A− λI3| =

∣∣∣∣∣∣
0.9− λ 0.1 0.1

0.3 0.7− λ 0.1
0.3 0.2 0.6− λ

∣∣∣∣∣∣
= −λ3 + 2.2λ2 − 1.51λ + 0.33.

The characteristic equation is:

λ3 − 2.2λ2 + 1.51λ− 0.33 = 0.

However, it is easy to check that the sum of all rows of A is equal
to 1.1 so λ = 1.1 is an eigenvalue of A.

1 −2.2 1.51 −0.33
1.1 1.1 −1.21 0.33

1 −1.1 0.3 0

It remains to solve

1 · λ2 − 1.1λ + 0.3 = 0.

But this last one is a second-degree equation that can be solved
directly, obtaining as a result

λ =
1.1±

√
1.12 − 4 · 1 · 0.3

2 · 1
⇒ λ = 0.6 and λ = 0.5.

In this way we have that the matrix A has the following eigen-
values

λ1 = 1.1, λ2 = 0.6, λ3 = 0.5.
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Let us next calculate the eigenvectors corresponding to the
calculated eigenvalues:

� Eigenvectors associated with λ1 = 1.1: The eigenvec-
tors associated with λ1 = 1.1 form the eigenspace V1.1 which
has implicit equations

V1.1 ≡ (A− 1.1I3) ·

xy
z

 =

0
0
0


⇒ V1.1 ≡

−0.2 0.1 0.1
0.3 −0.4 0.1
0.3 0.2 −0.5

 ·
xy
z

 =

0
0
0

 .

It is easy to check that V1.1 = 〈(1, 1, 1)〉 and therefore B1.1 =
{(1, 1, 1)} is a basis for V1.1.

59



Let us next calculate the eigenvectors corresponding to the
calculated eigenvalues:

� Eigenvectors associated with λ2 = 0.6: The eigenvec-
tors associated with λ2 = 0.6 form the eigenspace V0.6 which
has implicit equations

V0.6 ≡ (A− 0.6I3) ·

xy
z

 =

0
0
0


⇒ V0.6 ≡

0.3 0.1 0.1
0.3 0.1 0.1
0.3 0.2 0

 ·
xy
z

 =

0
0
0

 .

In this case V0.6 = 〈(−2, 3, 3)〉 and B0.6 = {(−2, 3, 3)} is a
basis for V0.6.
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Let us next calculate the eigenvectors corresponding to the
calculated eigenvalues:

� Eigenvectors associated with λ3 = 0.5: The eigenvec-
tors associated with λ3 = 0.5 form the eigenspace V0.5 which
has implicit equations

V0.5 ≡ (A− 0.5I3) ·

xy
z

 =

0
0
0


⇒ V0.5 ≡

0.4 0.1 0.1
0.3 0.2 0.1
0.3 0.2 0.1

 ·
xy
z

 =

0
0
0

 .

Now V0.5 = 〈(1, 1,−5)〉 and B0.5 = {(1, 1,−5)} is a basis of
V0.5.
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we obtain a basis of eigenvectors of A formed by the vectors

v1 = (1, 1, 1) associated with the eigenvalue λ1 = 1.1,

v2 = (−2, 3, 3) associated with the eigenvalue λ2 = 0.6,

v3 = (1, 1,−5) associated with the eigenvalue λ3 = 0.5.

Let us express P0 using this basis:

P0 = α1v1+α2v2+α3v3 ⇒

17
27
21

 = α1

1
1
1

+α2

−2
3
3

+α3

 1
1
−5


⇒

17
27
21

 =

 α1 − 2α2 + α3

α1 + 3α2 + α3

α1 + 3α2 − 5α3


⇒

 α1 − 2α2 + α3 = 17
α1 + 3α2 + α3 = 27
α1 + 3α2 − 5α3 = 21

and solving this system we obtain α1 = 20, α2 = 2, α3 = 1 and
therefore

P0 = 20v1+2v2+v3 ⇒

17
27
21

 = 20

1
1
1

+2

−2
3
3

+

 1
1
−5

 .
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Then,

AkP0 = 20Akv1+2Akv2+Akv3 = 20 ·1.1kv1+2 ·0.6kv2+0.5kv3

or, equivalently,0.9 0.1 0.1
0.3 0.7 0.1
0.3 0.2 0.6

k

·

17
27
21

 = 20·1.1k
1

1
1

+2·0.6k
−2

3
3

+0.5k

 1
1
−5

 .
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Now, by means of the expressions we have obtained, we can
calculate the capital in each group after any number of years.
For example:

� After k = 3 years, the capitals in each group will be de-
termined by the tuple P3 = A3P0 which can be calculated
via

P3 = A3P0 = 20 · 1.13v1 + 2 · 0.63v2 + 0.53v3

= 26.62v1 + 2 · 0.432v2 + 0.125v3

= 26.62

1
1
1

+ 0.432

−2
3
3

+ 0.125

 1
1
−5

 =

25.881
28.041
27.291

 .
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Now, by means of the expressions we have obtained, we can
calculate the capital in each group after any number of years.
For example:

� After k = 10 years, the capitals in each group will be de-
termined by the tuple P10 = A10P0 which we can calculate
as:

P10 = A10P0 = 20 · 1.110v1 + 2 · 0.610v2 + 0.510v3

= 51.8748v1 + 2 · 0.0120932v2 + 0.000976563v3

= 51.8748

1
1
1

 + 0.0120932

−2
3
3

 + 0.000976563

 1
1
−5


=

51.8516
51.9121
51.9062

 .

Thus, after ten years, the capital in group A rises to 51.8516
million euros, in group B is 51.9121 million and in group C
51.9062 million.
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If
P0 = α1v1 + α2v2 + · · · + αnvn

then
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We will now focus on the study of the trend. We assume then
that we continue with a matrix model

Pk = AkP0,

AkP0 = α1λ
k
1v1 + α2λ

k
2v2 + · · · + αnλ

k
nvn.
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We will now focus on the study of the trend. We assume then
that we continue with a matrix model

Pk = AkP0,

AkP0 = α1λ
k
1v1 + α2λ

k
2v2 + · · · + αnλ

k
nvn.
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Definition 12. An eigenvalue of a matrix A is said to be the
dominant eigenvalue if its absolute value is greater than that of
the rest of the eigenvalues of the matrix. An eigenvector asso-
ciated with the dominant eigenvalue is said to be a dominant
eigenvector.

Examples 13.
1) The eigenvalues of the matrix

A =

25 −40 −31
2 1 −2
18 −36 −24


are λ1 = −6, λ2 = 5 and λ3 = 3. If we calculate the absolute
value of these eigenvalues we have that

|λ1| = 6, |λ2| = 5, |λ3| = 3.

Therefore, λ1 = −6 is the dominant eigenvalue of the matrix
A. It is possible to calculate that V−6 = 〈(1, 0, 1)〉. The vector
(1, 0, 1) is a dominant eigenvector for the matrix A.
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2) The eigenvalues of the matrix

A =

25 −38 −31
5 −4 −5
14 −28 −20


are λ1 = −6, λ2 = 6 and λ3 = 1. The corresponding absolute
values are

|λ1| = 6, |λ2| = 6, |λ3| = 1.

The absolute value of the first two eigenvalues coincides. In that
case none of the eigenvalues has an absolute value strictly greater
than that of all the others and the matrix has no dominant eigen-
value.
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Suppose that in the identity (2) the eigenvalue λ1 is the dom-
inant eigenvalue of the matrix A and that

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|.
Consequently, we will have that v1 is a dominant eigenvector of
A. Taking the dominant eigenvalue as a common factor on the
right-hand side of (2) we have that

AkP0 = λk1

(
α1v1 + α2

(
λ2
λ1

)k
v2 + · · · + αn

(
λn
λ1

)k
vn

)
.

Since λ1 is the dominant eigenvalue it is clear that∣∣∣∣λ2λ1
∣∣∣∣ , . . . , ∣∣∣∣λnλ1

∣∣∣∣ < 1

but for large values of k it is easy to check that if a number r ∈ R
has an absolute value less than one (|r| < 1) then rk ≈ 0. In
this way when k is large,(

λ2
λ1

)k
≈ 0,

(
λ3
λ1

)k
≈ 0,

(
λn
λ1

)k
≈ 0

and therefore when k becomes large we will have that

AkP0 = λk1

α1v1 + α2

(
λ2
λ1

)k
︸ ︷︷ ︸
≈0

v2 + · · · + αn

(
λn
λ1

)k
︸ ︷︷ ︸
≈0

vn


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⇒ AkP0 ≈ λk1α1v1 .

From this we draw the following conclusions:

� For large values of k, the behavior of AkP0 depends solely on
the dominant eigenvalue and the dominant eigenvector.

� Depending on the value of λ1, the expression α1λ
k
1v1 will have

one behavior or another. Specifically, we have:

– If |λ1| < 1, for large values of k we will have that λk1 ≈ 0
and in that case

α1λ
k
1v1 ≈ 0.

Pk in successive periods tend to vanish.

– If |λ1| > 1, for large values of k we will have that λk ≈
±∞ and then

α1λ
k
1v1 ≈ ±∞

which means that the values in successive periods will grow
or decrease without limit.

– If λ1 = 1, for large values of k we will have that

α1λ
k
1v1 = α1v1

and the data tuples in successive periods will tend to a
constant equilibrium value given by αv1.

72



� We have that for large values of k, the data in period k, Pk,
can be calculated approximately by

Pk = AkP0 ≈ α1λ
k
1v1.

In many situations it will be of interest to calculate the vector
of percentages of Pk and then we will have that

vector of percentages of Pk

≈ vector of percentages of α1λ
k
1v1.

But,
vector of percentages of α1λ

k
1︸︷︷︸

number

v1︸︷︷︸
vector

= vector of percentages of v1

so that

percentages of Pk ≈ vector of percentages of v1.
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Examples 14.
1) In Example 11 we were studying the problem of three fi-
nancial groups that invest according to a certain fixed annual
investment table that led to a matrix model for the calculation
of the capitals of the three groups in successive periods of the
form

Pk =

0.9 0.1 0.1
0.3 0.7 0.1
0.3 0.2 0.6


︸ ︷︷ ︸

=A

k

·

17
27
21


︸ ︷︷ ︸

=P0

.

We saw that the transition matrix A has eigenvalues

λ1 = 1.1, λ2 = 0.6, λ3 = 0.5

so the dominant eigenvalue is λ1 = 1.1 and the corresponding
dominant eigenvector is v1 = (1, 1, 1). On the other hand, the
expression of the initial data tuple P0 in the basis of eigenvectors
v1, v2 and v3 calculated on page 61 is

P0 = 20︸︷︷︸
=α1

v1 + 2v2 + v3.
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Recalling the reasoning from page 71 we have that:

� For large values of k we have that

Pk ≈ 20 · 1.1kv1.

For example:

– After k = 3 years, the capital tuple, P3, can be calculated
approximately as

P3 ≈ 20 · 1.13v1 = 26.62

1
1
1

 =

26.62
26.62
26.62

 .

– After k = 10 years, the capital tuple, P10, can be calcu-
lated approximately as

P10 ≈ 20 · 1.110v1 = 51.8748

1
1
1

 =

51.8748
51.8748
51.8748

 .

It can be checked how even for not excessively high values
of k the approximations provide results very similar to the
exact data we obtained on page 65.
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� Since the dominant eigenvalue satisfies |λ1| = |1.1| = 1.1 >
1, we have that

Pk ≈ α11.1
kv1 = 20 · 1.1k

1
1
1


and the capitals of the three groups grow without limit during
the course of successive years.

� The percentages represented by the capitals for year k, when
k is sufficiently large, will be approximately the same as those
represented by the dominant eigenvector v1. The vector of
percentages of v1 is

100

1 + 1 + 1

1
1
1

 =

33.3
33.3
33.3

 .

Therefore, the future trend is that:

33.3 of the total capital will belong to group A.

33.3 of the total capital will belong to group B.

33.3 of the total capital will belong to group C.

It is observed that the trend, after a sufficiently large number
of years, is that the three groups accumulate capital of the
same amount.
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2) If we analyze Example 10 we have that the eigenvalues of
the transition matrix are

λ1 = 1, λ2 = 0.4, λ3 = 0.7.

Therefore the dominant eigenvalue is λ1 = 1. We had also cal-
culated the eigenvectors associated with these eigenvalues; in
particular, we saw that (6, 5, 7) is an eigenvector associated with
the dominant eigenvalue λ1 = 1 so v1 = (6, 5, 7) is a dominant
eigenvector. If we also consider the eigenvectors associated with
the other two eigenvalues we obtain the following basis of eigen-
vectors:

B = {(6, 5, 7), (0,−1, 1), (−3, 1, 2)}.
When we first formulated this example we saw that the initial
data were: 120 customers in company A, 190 in B and 320 in C.
This corresponded to an initial vector

P0 =

210
190
320

 .

If we calculate the coordinates of P0 in B we obtain the following
expression:

P0 = 35v1 + 30v2 + 15v3.

Then we have that the situation after k periods is approximated
by

AkP0 ≈ 35 · 1kv1 = 35v1.
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Since the dominant eigenvalue is equal to one, we have a sta-
bility situation in which the distribution of the companies will
stabilize around the limiting value 35v1 = 35(6, 5, 7). On page
?? we saw that this vector represented the percentages

(33.3%, 27.7%, 38.8%)

and the distribution we can expect for the future will be:

� Customers in company A = 33.3% of the total.

� Customers in company B = 27.7% of the total.

� Customers in company C = 38.8% of the total.
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