
Chapter 6

Matrix Diagonalization

6.1 Diagonalization Process

Most calculations we can perform with square matrices are simplified enormously if the matrices we work
with are diagonal. Thus, for example, we have:

1.


a1

a2

. . .

an

 ·

b1

b2
. . .

bn

 =


a1 · b1

a2 · b2
. . .

an · bn

.

2.

∣∣∣∣∣∣∣∣∣


a1

a2

. . .

an


∣∣∣∣∣∣∣∣∣ = a1 · a2 · · · · · an.

3.


a1

a2

. . .

an


−1

=


a−1

1

a−1
2

. . .

a−1

.

4.


a1

a2

. . .

an


k

=


ak1

ak2
. . .

akn

.

It will therefore be interesting to have methods that allow obtaining diagonal forms for any matrix.
Of special importance is the calculation of powers of a square matrix. We have already seen examples of
how these powers intervene in iterative phenomena that depend on a transition matrix. In these cases, the
concepts we are about to introduce will also allow explaining different aspects of this type of phenomena
related to the existence of certain stability states. Finally, we will introduce techniques that allow us to
study the trend for future iterations in models with matrix powers.

First, we will establish what we understand by diagonalizing a matrix. Since, given any matrix A, we
intend to perform on it the matrix operations we have listed, this diagonalization process must allow to
transform A into a diagonal matrix D,

A︸︷︷︸
Any matrix

−−−−−−−−−→
diagonalization

D︸︷︷︸
Diagonal matrix

,
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in such a way that we can recover for A the operations that we perform more easily on D. Let’s see then
the definition we give for diagonalization.

Definition 173. Given A ∈ Mn, we say it is a diagonalizable matrix if there exists C ∈ Mn invertible
such that the matrix

D = C−1 ·A · C

is a diagonal matrix. In such a case, we say that the matrix C diagonalizes the matrix A and we call it the
change-of-basis matrix.

We must now see that this definition indeed allows us to perform operations on the diagonalization D
that we can later take advantage of for the matrix A. First, for the determinant we have that

|D| = |C−1 ·A · C| = |C−1| · |A| · |C| = |C|−1 · |A| · |C| = |A|

and therefore the determinants of D and A coincide. Moreover

D = C−1 ·A · C ⇒ A = C ·D · C−1

and then
A2 = (C ·D · C−1) · (C ·D · C−1) = C ·D2 · C−1,
A3 = A2 ·A = (C ·D2 · C−1) · (C ·D · C−1) = C ·D3 · C−1,
A4 = A3 ·A = (C ·D3 · C−1) · (C ·D · C−1) = C ·D4 · C−1

being able to repeat this process indefinitely. In summary, we have thus demonstrated the following:

Properties 174. Let A ∈Mn be a diagonalizable matrix such that

D = C−1 ·A · C,

where C,D ∈Mn, with D being a diagonal matrix and C an invertible matrix. Then:

i) |A| = |D|.

ii) An = C ·Dn · C−1, n ∈ N. In particular, if A is invertible this property is also valid for n ∈ Z, n < 0.

Given a matrix A ∈ Mn×n, to diagonalize it we must find the change-of-basis matrix C and the diago-
nalization D. For this, we will make the following considerations:

� We will assume that the column vectors of the change-of-basis matrix C are v1, . . . , vn ∈ Rn, that is,

C = (v1|v2| . . . |vn),

and that

D =


λ1

λ2

. . .

λn

 .

� The matrix C must have an inverse and therefore

det(C) 6= 0⇔ {v1, v2, . . . , vn} are all of them independent.

� It is easy to verify that

A · C = A · (v1|v2| . . . |vn) = (Av1|Av2| . . . |Avn)

and also that
C ·D = (λ1v1|λ2v2| . . . |λnvn).
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� If the matrix C diagonalizes A with D being the diagonalization then, taking into account the previous
point,

D = C−1 ·A · C ⇔ A · C = C ·D

⇔ (Av1|Av2| . . . |Avn) = (λ1v1|λ2v2| . . . |λnvn)

⇔


Av1 = λ1v1

Av2 = λ2v2

...
Avn = λnvn

Therefore, if we find a basis of vectors of Rn, {v1, v2, . . . , vn}, satisfying this last property then the matrix
A is diagonalizable being C = (v1|v2| . . . |vn) and

D =


λ1

λ2

. . .

λn

 .

Definition 175. Given A ∈Mn we call:

� eigenvalue of A any real number λ ∈ R such that there exists some non-zero vector, v ∈ Rn, such
that

A · v = λv.

� eigenvector of A associated with the eigenvalue λ any vector v ∈ Rn such that

A · v = λv.

� eigenspace of A associated with the eigenvalue λ the set of all eigenvectors of A associated with
the eigenvalue λ,

Vλ = {v ∈ Rn/A · v = λv}.

Such set Vλ is a vector subspace of Rn.

The concepts of eigenvector and eigenvalue have important interpretations in different iterative matrix
models where they determine the stability positions of a system.

To check if λ is an eigenvalue of A we must find a non-zero vector, v ∈ Rn, such that A · v = λv. Now,

A · v = λv ⇔ A · v − λv = 0⇔ A · v − λIn · v = 0

⇔ (A− λIn) · v = 0,

so, equivalently, the vector v must verify the equation (A− λIn) · v = 0. Therefore, if we call A = A− λIn,
what we must find is a non-zero vector v = (x1, x2, . . . , xn) ∈ Rn such that

A ·


x1

x2

...
xn

 =


0
0
...
0

 .

This last expression constitutes a homogeneous system of n equations with n unknowns expressed in matrix
form with coefficient matrix A = A− λIn. Homogeneous systems always have at least one solution, the zero
solution (0, 0, . . . , 0) ∈ Rn, and what we intend is to find a non-zero solution of such homogeneous system.
For this, it will be necessary that the system has some solution different from the zero solution and therefore
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has more than one solution, that is, it is an indeterminate system, which depends on whether its coefficient
matrix, A, is regular or not. For all this we have

λ is an eigenvalue of A⇔ ∃ v ∈ Rn, v 6= 0, such that A · v = λv

⇔ A ·


x1

x2

...
xn

 = 0 is indeterminate⇔ |A| = 0

⇔ |A− λIn| = 0.

Let Vλ be the set of all eigenvectors of A associated with the eigenvalue λ. From all the previous reasoning,
it follows that

Vλ = {v ∈ Rn/A · v = λv}

= {v = (x1, x2, . . . , xn) ∈ Rn/(A− λIn) ·


x1

x2

...
xn

 =


0
0
...
0

}
so Vλ is a vector subspace with implicit equations given in matrix form by

Vλ ≡ (A− λIn) ·


x1

x2

...
xn

 =


0
0
...
0

 .

This is the basic technique for calculating eigenvalues and eigenvectors. In the following property, we
formulate it precisely along with other results of interest for manipulating eigenvalues and eigenvectors.

Property 176. Given A ∈Mn:

i) It holds that
λ ∈ R is an eigenvalue of A⇔ |A− λIn| = 0

and, if λ ∈ R is an eigenvalue, then Vλ is the vector subspace of Rn given by

Vλ ≡ (A− λIn) ·


x1

x2

...
xn

 =


0
0
...
0


and therefore

dim(Vλ) = n− rango(A− λIn).

ii) Suppose that λ1, λ2, . . . , λk ∈ R are eigenvalues of A distinct from each other. Then, if B1 is a basis of
Vλ1

, B2 is a basis of Vλ2
,. . . , Bk is a basis of Vλk , we have that

H = B1 ∪B2 ∪ · · · ∪Bk

is an independent set.

iii) If λ ∈ R is an eigenvalue of the matrix A and v ∈ Rn is an eigenvector of A associated with λ then

Akv = λkv.

Definition 177. Given A ∈Mn we call characteristic polynomial of the matrix A the polynomial

p(λ) = |A− λIn| ∈ Pn(λ)

and we call characteristic equation of the matrix A the equation

p(λ) = 0.
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Remark. From all the above, it follows that:

� The eigenvalues of a matrix, A ∈Mn, are the solutions of its characteristic equation.

� A matrix can be diagonalized if we find a basis formed exclusively by eigenvectors.

We may encounter the following problems that would prevent a matrix from being diagonalizable:

1. The matrix either has no eigenvalues or has an insufficient number of them.

2. The eigenvectors of the matrix do not allow forming a basis.

In what follows, we aim to give a characterization of matrices that are diagonalizable.

Definition 178.

i) Given a polynomial, p(λ) ∈ Pn(λ), we say that λ0 ∈ R is a zero of multiplicity k of p(λ) if we can express
p(λ) in the form

p(λ) = q(λ) · (λ− λ0)k,

where q(λ) ∈ Pn−k(λ) verifies that q(λ0) 6= 0.

ii) Given A ∈ Mn and λ ∈ R an eigenvalue of A we say that the algebraic multiplicity of λ is k if λ is a
zero of multiplicity k of the characteristic polynomial of the matrix A.

iii) Given A ∈ Mn and λ ∈ R an eigenvalue of A, we call geometric multiplicity of λ the dimension of the
eigenspace associated with λ, Vλ, that is, dim(Vλ).

Property 179. Let A ∈Mn whose eigenvalues are λ1, λ2, . . . , λk, such that ∀i = 1, . . . , k{
ni is the algebraic multiplicity of λi.
mi is the geometric multiplicity of λi.

.

Then it holds that

1. n1 + n2 + · · ·+ nk ≤ n.

2. 1 ≤ mi ≤ ni, ∀i = 1, . . . , k.

3. A is diagonalizable ⇔
{
n1 + n2 + · · ·+ nk = n.
mi = ni, ∀i = 1, . . . , k.

.

We collect below some important properties. The first three parts of the property indicate that there
exist certain types of matrices for which the existence of diagonalization is guaranteed without needing to
perform any calculation.

Property 180.

i) If A ∈Mn is a diagonal matrix,

A =


λ1

λ2

. . .

λn

 ,

then A is diagonalizable, and it holds that the matrix In diagonalizes the matrix A, the canonical basis
Bc of Rn is a basis of eigenvectors of A, and its eigenvalues are λ1, λ2, . . . , λn ∈ R such that the number
of times each eigenvalue is repeated indicates its algebraic and geometric multiplicity.

ii) Every symmetric matrix is diagonalizable.

iii) If A ∈Mn has n eigenvalues, all of them distinct, then A is diagonalizable.
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iv) If the columns or the rows of A ∈ Mn all sum to the same number r ∈ R, then λ = r is an eigenvalue
of A.

v) The characteristic polynomial of A ∈M2 is

p(λ) = λ2 − trace(A)λ+ |A|.

vi) The characteristic polynomial of A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ∈M3 is

p(λ) = −λ3 + trace(A)λ2

−
(∣∣∣∣(a11 a12

a21 a22

)∣∣∣∣+

∣∣∣∣(a22 a23

a32 a33

)∣∣∣∣+

∣∣∣∣(a11 a13

a31 a33

)∣∣∣∣)λ+ |A|.

6.2 Study of Trends in Iterative Processes

The product and power of matrices are fundamental in formulating the most important matrix models.

Suppose we are studying a phenomenon involving several quantities a1, a2, . . . , ak that vary over time.
If we study that phenomenon over several periods, n = 0 (initial period), n = 1, n = 2, etc., the quantities
a1, a2, . . . , ak will take different values. Therefore, we will have different values for them in each period, n:
a1,n, a2,n, . . . , ak,n. If we arrange the value of the quantities in each period as a column vector, we have

Pn =


a1,n

a2,n

...
ak,n

 .

Thus we have a list of k-tuples, P0, P1, . . . , Pn, which provide the information of the phenomenon in each
period.

The important thing here would be to be able to calculate the k-tuples corresponding to future periods
so that we can predict the evolution of the phenomenon. This is where the calculation of matrix powers
comes into play, since in numerous situations, if we know the initial situation of the phenomenon, i.e., we
know the tuple P0 corresponding to the initial period n = 0, we can calculate the tuple for any period n
using a formula of the type

Pn = An · P0,

where A is a square matrix of order k called the transition matrix which governs the changes the phe-
nomenon undergoes from one period to the next.

Consequently, the fundamental elements of these models are:

� The model will describe the situation of a certain phenomenon in successive periods. We
will know the initial values which we will collect in a vector P0 and call P1, P2, P3, in general
Pk, the vectors corresponding to the following periods.

� We will have a transition matrix, A, which governs the changes from one period to the next
according to the matrix equations

Pk+1 = APk and Pk = AkP0.

Studying the trend involves determining the future behavior of a model of this type, which ultimately
means calculating or studying in some way the value of

AkP0
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for large values of k (this is equivalent to studying the limit limk→∞AkP0). Diagonalization techniques
provide us with a direct way to perform this calculation. In fact, Property 174 shows how to calculate the
power Ak once we have diagonalized the matrix A.

Example 181. Suppose that in a certain commercial sector three companies compete, which we will call
A, B and C. From one year to the next, the customers of each of them decide to remain loyal or switch to
one of the others. A study is conducted on the movements between the three companies and it is observed
that year after year the customers show similar behavior determined by the data in the following table:

Customers Customers Customers
of A of B of C

Switch to being customers of A 80% 10% 10%
Switch to being customers of B 10% 60% 20%
Switch to being customers of C 10% 30% 70%

For example, we see that each year 80% of the customers of A remain loyal to A, 10% switch to B and 10%
to C.

Suppose also that in the year the study began, company A had 210 customers, B had 190 and C, 320.

Let’s set up a matrix model to study this problem. Assuming that year k = 0 is the year in which the
study of the customers of the three companies began, we will call:

� Ak = number of customers of company A after k years.

� Bk = number of customers of company B after k years.

� Ck = number of customers of company C after k years.

The information for each year will be grouped in a column vector which we will denote as Pk,

Pk =

AkBk
Ck

 .

According to the problem data we have that A0 = 210, B0 = 190 and C0 = 320 so

P0 =

210
190
320

 .

Applying the transition table it is easy to calculate the customers there will be in each company if we know
those of the previous year. Thus, if in year k we have Ak in A, Bk in B and Ck in C, in year k + 1 we will
have:

� Ak+1︸ ︷︷ ︸
customers in A in year k + 1

= 80% of Ak+10% of Bk+10% of Ck = 0.8Ak + 0.1Bk + 0.1Ck.

� Bk+1︸ ︷︷ ︸
customers in B in year k + 1

= 10% of Ak+60% of Bk+20% of Ck = 0.1Ak + 0.6Bk + 0.2Ck.

� Ck+1︸ ︷︷ ︸
customers in C in year k + 1

= 10% of Ak+30% of Bk+70% of Ck = 0.1Ak + 0.3Bk + 0.7Ck

Writing all this information in column and using the definition of matrix product, it is easy to realize that

Pk+1 =

0.8Ak + 0.1Bk + 0.1Ck
0.1Ak + 0.6Bk + 0.2Ck
0.1Ak + 0.3Bk + 0.7Ck

 =

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7

 ·
AkBk
Ck

 =

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7

 · Pk.
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Denoting A =

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7

, ultimately we have proved that

Pk+1 = APk.

We therefore have,

P1 = AP0

P2 = AP1

P3 = AP2

P4 = AP3

etc.

Then, if we want to calculate P4 according to this scheme, since the only data we know are those of the
initial year, i.e., P0, we would have to first calculate P1, then P2 and P3 and finally P4. However, we have

P2 = AP1 = A(AP0) = (AA)P0 = A2P0.

P3 = AP2 = (using the previous equation) = A(A2P0) = (AA2)P0 = A3P0.

P4 = AP3 = (using the previous equation) = A(A3P0) = (AA3)P0 = A4P0.

Therefore using matrix powers we can calculate P4 without needing to first obtain P0, P1, P2 and P3.
Actually, it is clear that this process can be applied iteratively as many times as we want so, in general,

Pk = AkP0 . (6.1)

What we see here is that the distribution of customers in year k, Pk, is determined by the initial distribution,
P0, and the k-th power of A. The matrix A regulates the step from one year to the next and is the transition
matrix for this problem.

Since we know the initial distribution of customers, P0, we can easily calculate the distribution in suc-
cessive years. To do this, we compute several powers of A:

A2 = AA =

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7

 =

0.66 0.17 0.17
0.16 0.43 0.27
0.18 0.4 0.56

 .

A3 = AA2 =

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7

0.66 0.17 0.17
0.16 0.43 0.27
0.18 0.4 0.56

 =

0.562 0.219 0.219
0.198 0.355 0.291
0.24 0.426 0.49

 .

A4 = AA3 =

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7

0.562 0.219 0.219
0.198 0.355 0.291
0.24 0.426 0.49

 =

0.4934 0.2533 0.2533
0.223 0.3201 0.2945
0.2836 0.4266 0.4522

 .

Using these calculations with equation (6.1) we have that

P1 = AP0 =

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7

210
190
320

 =

219
199
302

 .

P2 = A2P0 =

0.66 0.17 0.17
0.16 0.43 0.27
0.18 0.4 0.56

210
190
320

 =

225.3
201.7
293

 .

P3 = A3P0 =

0.562 0.219 0.219
0.198 0.355 0.291
0.24 0.426 0.49

210
190
320

 =

229.71
202.15
288.14

 .

P4 = A4P0 =

0.4934 0.2533 0.2533
0.223 0.3201 0.2945
0.2836 0.4266 0.4522

210
190
320

 =

232.797
201.889
285.314

 .
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After performing all these operations, it is clear that the major obstacle is the calculation of the powers
of A because it is not a diagonal matrix. Up to the fourth power the calculation could be done manually, but
if we wanted higher powers like A20 or A30, it seems essential to resort to other techniques. On the other
hand, once this model is formulated, several questions arise to be solved:

a) Is it possible to study the future trend in the distribution of customers? Even more interesting
than calculating the customers in a specific year would be to be able to describe future
behavior by determining whether customers tend to choose one of the three companies with
higher priority or if, on the contrary, they distribute homogeneously among them.

b) Do equilibrium distributions exist? For example, the presidents of the three companies could
try to agree to distribute the customer market in such a way that it remains constant from
one year to the next. For this, we should choose an initial distribution of customers

P0 =

A0

B0

C0


such that the distributions in following years, P1, P2, P3, etc., are always equal. If the
customer distributions in year zero and year one are equal we will have P0 = P1 and since
we know that P1 = AP0 we deduce that

AP0 = P0 .

If we find an initial distribution, P0, that satisfies this last condition, it is not difficult to
check that the distribution in all subsequent years is always the same since

P1 = AP0 = P0,

P2 = AP1 = AP0 = P0,

P3 = AP2 = AP0 = P0,

P4 = AP3 = AP0 = P0,

etc.

For example, if A0 = 600, B0 = 500, C0 = 700 then P0 = (600, 500, 700) and it is easy to
check that

AP0 = A

600
500
700

 =

600
700
500

 = P0.

Therefore, since the condition AP0 = P0 holds, in all following years we will always have
the same customer distribution given by the 3-tuple (600, 500, 700).

c) If the total number of customers is increasing or decreasing, it will be impossible for the
number of customers of the three companies in successive years to remain constant. In
such a case, the presidents could agree that at least the percentages of customers for each
company are the same in all years. It is simple to prove that the distributions of customers
in the initial year, P0, and in year one, P1, represent the same percentages if we can find
λ 6= 0 such that P1 = λP0. Since P1 = AP0 we conclude that

AP0 = λP0 .

In this case, we ask about how to calculate the value λ and the initial distribution P0.

In fact, the answers to the questions posed at the end of the previous example are the eigenvalues and
eigenvectors of the matrix. Let’s see next how to calculate them.
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Example 182. Let us calculate all eigenvalues and eigenvectors of the matrix

A =

0.8 0.1 0.1
0.1 0.6 0.2
0.1 0.3 0.7

 .

We start by calculating the characteristic polynomial:

|A− λI3| =

∣∣∣∣∣∣
0.8 0.1 0.1

0.1 0.6 0.2
0.1 0.3 0.7

− λ
1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0.8− λ 0.1 0.1

0.1 0.6− λ 0.2
0.1 0.3 0.7− λ

∣∣∣∣∣∣
= (0.8− λ)(0.6− λ)(0.7− λ) + 0.1 · 0.3 · 0.1 + 0.1 · 0.2 · 0.1
−
(
0.1(0.6− λ)0.1 + 0.3 · 0.2(0.8− λ) + 0.1 · 0.1(0.7− λ)

)
= −λ3 + 2.1λ2 − 1.38λ+ 0.28.

This last expression is the characteristic polynomial of the matrix A (indeed, it is a polynomial of degree
three in the variable λ). The characteristic equation of A is

−λ3 + 2.1λ2 − 1.38λ+ 0.28 = 0.

Let us solve the characteristic equation. If we consider that we already know that λ = 1 is an eigenvalue, we
know in advance that one of the solutions of the characteristic equation is λ = 1. If we then apply Ruffini’s
method for λ = 1,

−1 2.1 −1.38 0.28
1 −1 1.1 −0.28

−1 1.1 −0.28 0
,

we confirm that indeed λ = 1 is a solution of the equation. From here it will be difficult to obtain the other
solutions by applying Ruffini’s method again. However, the coefficients we obtain in the last line of the
previous Ruffini division (−1, 1.1 and −0.28) indicate that the equation left to solve is

−λ2 + 1.1λ− 0.28 = 0

and this is a second-degree equation that we can solve directly by applying the corresponding formula to
obtain

λ =
−1.1±

√
1.12 − 4 · (−1) · (−0.28)

2 · (−1)

{
= 0.4
= 0.7

,

so finally, the three solutions of the characteristic equation are, λ = 1
λ = 0.4
λ = 0.7

.

In this way, we deduce that the only three eigenvalues of the matrix A are λ = 1, λ = 0.4 and λ = 0.7.

Let us calculate the eigenspaces corresponding to each of the three eigenvalues:

� The eigenspace associated with λ = 1 is the vector subspace with implicit equations

V1 ≡ (A− 1I3)

xy
z

 =

0
0
0

⇒ V1 ≡

−0.2 0.1 0.1
0.1 −0.4 0.2
0.1 0.3 −0.3

xy
z

 =

0
0
0

 .

Solving the system, it is easy to check that a basis for this subspace is B1 = {(6, 5, 7)}.
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� For λ = 0.4 the eigenspace is the vector subspace

V0.4 ≡ (A− 0.4I3)

xy
z

 =

0
0
0

⇒ V0.4 ≡

0.4 0.1 0.1
0.1 0.2 0.2
0.1 0.3 0.3

xy
z

 =

0
0
0

 .

A basis for this subspace is B0.4 = {(0,−1, 1)}.

� For λ = 0.7 the eigenspace is the vector subspace

V0.7 ≡ (A− 0.7I3)

xy
z

 =

0
0
0

⇒ V0.7 ≡

0.1 0.1 0.1
0.1 −0.1 0.2
0.1 0.3 0

xy
z

 =

0
0
0

 .

A basis for this last subspace is B0.7 = {(−3, 1, 2)}.

Part ii) of Property 176 guarantees that by combining the elements of B1, B0.4 and B0.7 we obtain a
set of independent vectors

B = {(6, 5, 7), (0,−1, 1), (−3, 1, 2)}.

Since three independent vectors in R3 form a basis, B is a basis formed by eigenvectors associated, in that
order, with the eigenvalues λ = 1, λ = 0.4 and λ = 0.7. Therefore, the initial matrix, A, is diagonalizable
with change-of-basis matrix C and diagonalization D given by

C =

6 0 −3
5 −1 1
7 1 2

 , D =

1 0 0
0 0.4 0
0 0 0.7

 .

Once we know the eigenvalues and eigenvectors, there are calculations we can perform more easily.

Example 183. Part iii) of Property 176 shows that a calculation of the type Akv is greatly simplified if
v is an eigenvector.

If in the previous customer example, the initial data are P0 = (6, 5, 7), to calculate AkP0 since we know
that (6, 5, 7) is an eigenvector of A associated with the eigenvalue λ = 1, directly for any k we have

AkP0 = Ak

6
5
7

 = 1k

6
5
7


and we do not need to perform the explicit calculation of the power Ak.

However, when we know the initial data tuple P0 or when we want to study the trend for large values of
k, the method we will see next called the ’power method’ is more appropriate.

6.2.1 The Power Method

Suppose we want to perform the calculation
AkP0

for some matrix A ∈Mn, the initial data n-tuple P0 and k ∈ N. Assume that the matrix A is diagonalizable.
Then, we can calculate for A a basis of eigenvectors {v1, v2, . . . , vn} each of them associated respectively with
the eigenvalues λ1, λ2, . . . , λn in the form
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Eigenvector Associated Eigenvalue
v1 λ1

v2 λ2

...
...

vn λn

Since the eigenvectors v1, v2, . . . , vn form a basis of Rn, any n-tuple can be obtained as a linear combination
of them. In particular, the n-tuple P0 can be written in the form

P0 = α1v1 + α2v2 + · · ·+ αnvn

for certain coefficients α1, α2, . . . , αn ∈ R that can be calculated by solving the corresponding system. Now,
we can take advantage of the expression of P0 as a linear combination of the eigenvectors v1, v2, . . . , vn to
perform the calculation AkP0. Indeed, we have that:

AkP0 = Ak (α1v1 + α2v2 + · · ·+ αnvn) =

 using the
distributive property

of matrix product

 = Akα1v1 +Akα2v2 + · · ·+Akαnvn

= α1A
kv1 + α2A

kv2 + · · ·+ αnA
kvn.

In this last expression, the calculations we have underlined remain to be done. But if we take into account
that v1, v2, . . . , vn are eigenvectors, it is possible to apply part iii) of Property 176 to reach

Akv1 = λk1v1, Akv2 = λk2v2, . . . Akvn = λknvn

and in this way we have carried out the most complicated part of the calculation since after using the last
equalities the matrix power Ak disappears and in its place we have the powers λk1 , λ

k
2 , . . . , λ

k
n which are all

simple powers of numbers (a number raised to a number and not a matrix raised to a number). In this way,
gathering all the calculations we have that

AkP0 = α1A
kv1︸ ︷︷ ︸
λk1v1

+α2A
kv2︸ ︷︷ ︸
λk2v2

+ · · ·+ αnA
kvn︸ ︷︷ ︸

λknvn

= α1λ
k
1v1 + α2λ

k
2v2 + · · ·+ αnλ

k
nvn.

⇒ AkP0 = α1λ
k
1v1 + α2λ

k
2v2 + · · ·+ αnλ

k
nvn .

As we have already commented, we see how the calculation of the matrix power Ak reduces to the simpler
calculation of the numerical powers λk1 , λ

k
2 , . . . , λ

k
n.

Example 184. Suppose three investment groups, which we will call A, B and C, manage most of their
capital themselves but diversify their investment by allocating a percentage to one of the other two groups.
From one year to the next, they keep the investment percentages fixed according to the following table:

invests in
A B C

A 90% 30% 30%
B 10% 70% 20%

G
ro

u
p

C 10% 10% 60%

From the data in the table, it follows that group A manages 90% of its funds itself and invests 30% in B and
another 30% in C. If we sum the percentages, we see that the total investment of group A is (90+30+30)% =
150% and therefore, each year group A receives 50% profits which it again allocates to investment. The same
analysis performed for the other two groups reveals that the investment of group B amounts to 100% of
its capital while group C reinvests only 80% (the other 20% could be losses or capital allocated to other
purposes).

Suppose that initially the capital in each group is, in millions of euros, as follows:
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Group A Group B Group C
Capital 17 27 21

Let us study the capital in subsequent years. To do this, we will set up a matrix model for this problem.
We will start by calling

P0 =

17
27
21

 .

the initial data 3-tuple. It is clear that if in year k, we have capital Ak in group A, Bk in group B and Ck
in group C, in the next year (year k + 1) we will have:

Ak+1=Capital in A in year k + 1= 90% of Ak+10% of Bk+10% of Ck=0.9Ak+0.1Bk+0.1Ck,

Bk+1=Capital in B in year k + 1= 30% of Ak+70% of Bk+10% of Ck=0.3Ak+0.7Bk+0.1Ck,

Ck+1=Capital in C in year k + 1= 30% of Ak+20% of Bk+60% of Ck=0.3Ak+0.2Bk+0.6Ck.

Expressing these equalities in matrix form we have thatAk+1

Bk+1

Ck+1

 =

0.9 0.1 0.1
0.3 0.7 0.1
0.3 0.2 0.6

 ·
Ak

Bk
Ck


so that, as we have seen in previous examples, we arrive atAk

Bk
Ck

 =

0.9 0.1 0.1
0.3 0.7 0.1
0.3 0.2 0.6

k

·

A0

B0

C0

 . (6.2)

If we denote

Pk =

Ak

Bk
Ck

 and A =

0.9 0.1 0.1
0.3 0.7 0.1
0.3 0.2 0.6


abbreviatedly the matrix equation (6.2) is written as

Pk = AkP0.

The 3-tuple Pk that contains the data on the capital of the three groups in year k can be obtained through
the calculation of the matrix power Ak but in this case we will use the power method described on page 225.
For this, we start by calculating the eigenvalues and eigenvectors of the matrix A.

The characteristic polynomial of A is

p(λ) = |A− λI3| =

∣∣∣∣∣∣
0.9− λ 0.1 0.1

0.3 0.7− λ 0.1
0.3 0.2 0.6− λ

∣∣∣∣∣∣ = −λ3 + 2.2λ2 − 1.51λ+ 0.33.

To calculate the eigenvalues we must solve the equation (we have multiplied by -1 so that the coefficient
accompanying λ3 is positive)

λ3 − 2.2λ2 + 1.51λ− 0.33 = 0.

However, it is easy to check that the sum of all rows of A is equal to 1.1 so part iv) of Property 180 allows
us to assert that λ = 1.1 is an eigenvalue of A. In this way we already know that one of the solutions of the
characteristic equation is λ = 1.1. If we divide using Ruffini’s method we have

1 −2.2 1.51 −0.33
1.1 1.1 −1.21 0.33

1 −1.1 0.3 0
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By performing the division by Ruffini we confirm that indeed λ = 1.1 is a solution of the equation (since we
obtain remainder equal to zero) and moreover the non-zero coefficients in the last row (i.e., 1, −1.1 and 0.3)
indicate that the equation left to solve is

1 · λ2 − 1.1λ+ 0.3 = 0.

But this last one is a second-degree equation that can be solved directly, obtaining as a result

λ =
1.1±

√
1.12 − 4 · 1 · 0.3

2 · 1
⇒ λ = 0.6 and λ = 0.5.

In this way we have that the matrix A has the following eigenvalues

λ1 = 1.1, λ2 = 0.6, λ3 = 0.5.

Since A is a square matrix of order three with three distinct eigenvalues, applying part iii) of Property
180, we know that the matrix A is diagonalizable and we will be able to obtain a basis of eigenvectors. Let
us next calculate the eigenvectors corresponding to the calculated eigenvalues:

� Eigenvectors associated with λ1 = 1.1: The eigenvectors associated with λ1 = 1.1 form the
eigenspace V1.1 which has implicit equations

V1.1 ≡ (A− 1.1I3) ·

xy
z

 =

0
0
0

⇒ V1.1 ≡

−0.2 0.1 0.1
0.3 −0.4 0.1
0.3 0.2 −0.5

 ·
xy
z

 =

0
0
0

 .

It is easy to check that V1.1 = 〈(1, 1, 1)〉 and therefore B1.1 = {(1, 1, 1)} is a basis for V1.1.

� Eigenvectors associated with λ2 = 0.6: The eigenvectors associated with λ2 = 0.6 form the
eigenspace V0.6 which has implicit equations

V0.6 ≡ (A− 0.6I3) ·

xy
z

 =

0
0
0

⇒ V0.6 ≡

0.3 0.1 0.1
0.3 0.1 0.1
0.3 0.2 0

 ·
xy
z

 =

0
0
0

 .

In this case V0.6 = 〈(−2, 3, 3)〉 and B0.6 = {(−2, 3, 3)} is a basis for V0.6.

� Eigenvectors associated with λ3 = 0.5: The eigenvectors associated with λ3 = 0.5 form the
eigenspace V0.5 which has implicit equations

V0.5 ≡ (A− 0.5I3) ·

xy
z

 =

0
0
0

⇒ V0.5 ≡

0.4 0.1 0.1
0.3 0.2 0.1
0.3 0.2 0.1

 ·
xy
z

 =

0
0
0

 .

Now V0.5 = 〈(1, 1,−5)〉 and B0.5 = {(1, 1,−5)} is a basis of V0.5.

Part ii) of Property 176 guarantees that by combining the vectors from B1.1, B0.6 and B0.5 we obtain
a set of independent vectors so We obtain a basis of eigenvectors of A formed by the vectors

v1 = (1, 1, 1) associated with the eigenvalue λ1 = 1.1,

v2 = (−2, 3, 3) associated with the eigenvalue λ2 = 0.6,

v3 = (1, 1,−5) associated with the eigenvalue λ3 = 0.5.

The vectors v1, v2 and v3 are a basis of R3 and to apply the power method we need to express the initial
values tuple, P0, as a linear combination of them. That is, we need to find the coefficients α1, α2 and α3

such that

P0 = α1v1 + α2v2 + α3v3 ⇒

17
27
21

 = α1

1
1
1

+ α2

−2
3
3

+ α3

 1
1
−5

⇒
17

27
21

 =

 α1 − 2α2 + α3

α1 + 3α2 + α3

α1 + 3α2 − 5α3


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⇒

 α1 − 2α2 + α3 = 17
α1 + 3α2 + α3 = 27
α1 + 3α2 − 5α3 = 21

and solving this system we obtain α1 = 20, α2 = 2, α3 = 1 and therefore

P0 = 20v1 + 2v2 + v3 or equivalently

17
27
21

 = 20

1
1
1

+ 2

−2
3
3

+

 1
1
−5

 .

In this way, to calculate AkP0 we proceed as on page 226 in the form

AkP0 = 20Akv1 + 2Akv2 +Akv3 = 20 · 1.1kv1 + 2 · 0.6kv2 + 0.5kv3

or, equivalently,0.9 0.1 0.1
0.3 0.7 0.1
0.3 0.2 0.6

k

·

17
27
21

 = 20 · 1.1k
1

1
1

+ 2 · 0.6k
−2

3
3

+ 0.5k

 1
1
−5

 .

Now, by means of the expressions we have obtained, we can calculate the capital in each group after any
number of years. For example:

� After k = 3 years, the capitals in each group will be determined by the tuple P3 = A3P0 which can be
calculated via

P3 = A3P0 = 20 · 1.13v1 + 2 · 0.63v2 + 0.53v3 = 26.62v1 + 2 · 0.432v2 + 0.125v3

= 26.62

1
1
1

+ 0.432

−2
3
3

+ 0.125

 1
1
−5

 =

25.881
28.041
27.291

 .

Therefore, after three years, the capital in group A is 25.881 million euros, in group B 28.041 million
and in group C 27.291 million.

� After k = 10 years, the capitals in each group will be determined by the tuple P10 = A10P0 which we
can calculate as:

P10 = A10P0 = 20 · 1.110v1 + 2 · 0.610v2 + 0.510v3 = 51.8748v1 + 2 · 0.0120932v2 + 0.000976563v3

= 51.8748

1
1
1

+ 0.0120932

−2
3
3

+ 0.000976563

 1
1
−5

 =

51.8516
51.9121
51.9062

 .

Thus, after ten years, the capital in group A rises to 51.8516 million euros, in group B is 51.9121 million
and in group C 51.9062 million.

Using this method it is equally easy to calculate the capitals after any number of years.

We will now focus on the study of the trend for iterative matrix models. We assume then that we continue
with a matrix model in which the tuple that provides the values for period k, Pk, is calculated via the matrix
equation

Pk = AkP0,

where A ∈ Mn is the transition matrix, P0 is the n-tuple of initial values and k ∈ N the number of elapsed
periods.
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Earlier we saw that if the matrix A is diagonalizable and we have a basis formed by the eigenvectors
v1, v2, . . . , vn associated respectively with the eigenvalues λ1, λ2, . . . , λn, it is easy to perform the calculation
AkP0 if we have an expression of the initial values tuple P0 as a linear combination of the eigenvectors,

P0 = α1v1 + α2v2 + · · ·+ αnvn.

Then, the calculation of the power AkP0 was simple through the identity

AkP0 = α1λ
k
1v1 + α2λ

k
2v2 + · · ·+ αnλ

k
nvn. (6.3)

If we study the right-hand side of this equality we observe that all the elements involved in it are constants
(α1, α2, . . . , αn or v1, v2, . . . , vn are coefficients or eigenvectors that we will have calculated previously). As
k increases, the only elements of the expression that vary are the numerical powers λk1 , λ

k
2 , . . . , λ

k
n which we

underline below,

α1λ
k
1v1 + α2λ

k
2v2 + · · ·+ αnλ

k
nvn.

Among the underlined powers, as k increases, the one corresponding to the largest eigenvalue will grow
more rapidly. It is for this reason that the largest eigenvalue determines (in the sense we will see later) the
behavior of the matrix model when k grows. This motivates us to give a name to that largest eigenvalue in
the following definition.

Definition 185. An eigenvalue of a matrix A is said to be the dominant eigenvalue if its absolute value is
greater than that of the rest of the eigenvalues of the matrix. An eigenvector associated with the dominant
eigenvalue is said to be a dominant eigenvector.

Examples 186.
1) The eigenvalues of the matrix

A =

25 −40 −31
2 1 −2
18 −36 −24


are λ1 = −6, λ2 = 5 and λ3 = 3. If we calculate the absolute value of these eigenvalues we have that

|λ1| = 6, |λ2| = 5, |λ3| = 3.

The absolute value of the eigenvalue λ1 = −6 is greater than that of the other eigenvalues. Therefore,
λ1 = −6 is the dominant eigenvalue of the matrix A. It is possible to calculate by the usual methods the
eigenspace associated with the eigenvalue λ1 = −6 obtaining that V−6 = 〈(1, 0, 1)〉. The vector (1, 0, 1) (and
all its linear combinations) is an eigenvector associated with the dominant eigenvalue λ1 = −6 and therefore
we will say that (1, 0, 1) is a dominant eigenvector for the matrix A.

2) The eigenvalues of the matrix

A =

25 −38 −31
5 −4 −5
14 −28 −20


are λ1 = −6, λ2 = 6 and λ3 = 1. The corresponding absolute values are

|λ1| = 6, |λ2| = 6, |λ3| = 1.

The absolute value of the first two eigenvalues coincides. In that case none of the eigenvalues has an absolute
value strictly greater than that of all the others and the matrix has no dominant eigenvalue.
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Suppose that in the identity (6.3) the eigenvalue λ1 is the dominant eigenvalue of the matrix A and that

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|.

Consequently, we will have that v1 is a dominant eigenvector of A. Taking the dominant eigenvalue as a
common factor on the right-hand side of (6.3) we have that

AkP0 = λk1

(
α1v1 + α2

(
λ2

λ1

)k
v2 + · · ·+ αn

(
λn
λ1

)k
vn

)
.

Since λ1 is the dominant eigenvalue it is clear that∣∣∣∣λ2

λ1

∣∣∣∣ , . . . , ∣∣∣∣λnλ1

∣∣∣∣ < 1

but for large values of k it is easy to check that if a number r ∈ R has an absolute value less than one
(|r| < 1) then rk ≈ 0. In this way when k is large,(

λ2

λ1

)k
≈ 0,

(
λ3

λ1

)k
≈ 0,

(
λn
λ1

)k
≈ 0

and therefore when k becomes large we will have that

AkP0 = λk1

α1v1 + α2

(
λ2

λ1

)k
︸ ︷︷ ︸
≈0

v2 + · · ·+ αn

(
λn
λ1

)k
︸ ︷︷ ︸
≈0

vn


⇒ AkP0 ≈ λk1α1v1 .

From this we draw the following conclusions:

� For large values of k, the behavior of AkP0 depends solely on the dominant eigenvalue and the dominant
eigenvector.

� Depending on the value of λ1, the expression α1λ
k
1v1 will have one behavior or another. Specifically,

we have:

– If |λ1| < 1, for large values of k we will have that λk1 ≈ 0 and in that case

α1λ
k
1v1 ≈ 0.

In other words, the values of Pk in successive periods tend to vanish.

– If |λ1| > 1, for large values of k we will have that λk ≈ ±∞ and then

α1λ
k
1v1 ≈ ±∞

which means that the values in successive periods will grow or decrease without limit.

– If λ1 = 1, for large values of k we will have that

α1λ
k
1v1 = α1v1

and the data tuples in successive periods will tend to a constant equilibrium value given by αv1.

� We have that for large values of k, the data in period k, Pk, can be calculated approximately by

Pk = AkP0 ≈ α1λ
k
1v1.

In many situations it will be of interest to calculate the vector of percentages of Pk and then we will
have that

vector of percentages of Pk ≈ vector of percentages of α1λ
k
1v1.
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However, it is simple to check that

vector of percentages of α1λ
k
1︸ ︷︷ ︸

number

v1︸︷︷︸
vector

= vector of percentages of v1

so that
vector of percentages of Pk ≈ vector of percentages of v1.

In other words, for large values of k, the percentages represented by the data in different periods will
be approximately equal to those of the dominant eigenvector v1.

Examples 187.
1) In Example 184 we were studying the problem of three financial groups that invest according to a
certain fixed annual investment table that led to a matrix model for the calculation of the capitals of the
three groups in successive periods of the form

Pk =

0.9 0.1 0.1
0.3 0.7 0.1
0.3 0.2 0.6


︸ ︷︷ ︸

=A

k

·

17
27
21


︸ ︷︷ ︸

=P0

.

We saw that the transition matrix A has eigenvalues

λ1 = 1.1, λ2 = 0.6, λ3 = 0.5

so the dominant eigenvalue is λ1 = 1.1 and the corresponding dominant eigenvector is v1 = (1, 1, 1). On the
other hand, the expression of the initial data tuple P0 in the basis of eigenvectors v1, v2 and v3 calculated
on page 228 is

P0 = 20︸︷︷︸
=α1

v1 + 2v2 + v3.

Recalling the reasoning from page 231 we have that:

� For large values of k we have that
Pk ≈ 20 · 1.1kv1.

For example:

– After k = 3 years, the capital tuple, P3, can be calculated approximately as

P3 ≈ 20 · 1.13v1 = 26.62

1
1
1

 =

26.62
26.62
26.62

 .

– After k = 10 years, the capital tuple, P10, can be calculated approximately as

P10 ≈ 20 · 1.110v1 = 51.8748

1
1
1

 =

51.8748
51.8748
51.8748

 .

It can be checked how even for not excessively high values of k the approximations provide results very
similar to the exact data we obtained on page 229.

� Since the dominant eigenvalue satisfies |λ1| = |1.1| = 1.1 > 1, we have that

Pk ≈ α11.1kv1 = 20 · 1.1k
1

1
1


and the capitals of the three groups grow without limit during the course of successive years.
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� The percentages represented by the capitals for year k, when k is sufficiently large, will be approximately
the same as those represented by the dominant eigenvector v1. The vector of percentages of v1 is

100

1 + 1 + 1

1
1
1

 =

33.3
33.3
33.3

 .

Therefore, the future trend is that:

33.3 of the total capital will belong to group A.

33.3 of the total capital will belong to group B.

33.3 of the total capital will belong to group C.

It is observed that the trend, after a sufficiently large number of years, is that the three groups
accumulate capital of the same amount.

2) If we analyze Example 182 we have that the eigenvalues of the transition matrix are

λ1 = 1, λ2 = 0.4, λ3 = 0.7.

Therefore the dominant eigenvalue is λ1 = 1. We had also calculated the eigenvectors associated with these
eigenvalues; in particular, we saw that (6, 5, 7) is an eigenvector associated with the dominant eigenvalue
λ1 = 1 so v1 = (6, 5, 7) is a dominant eigenvector. If we also consider the eigenvectors associated with the
other two eigenvalues we obtain the following basis of eigenvectors:

B = {(6, 5, 7), (0,−1, 1), (−3, 1, 2)}.

When we first formulated this example on page 221 we saw that the initial data were: 120 customers in
company A, 190 in B and 320 in C. This corresponded to an initial vector

P0 =

210
190
320

 .

If we calculate the coordinates of P0 in B we obtain the following expression:

P0 = 35v1 + 30v2 + 15v3.

Then we have that the situation after k periods is approximated by

AkP0 ≈ 35 · 1kv1 = 35v1.

Since the dominant eigenvalue is equal to one, we have a stability situation in which the distribution of the
companies will stabilize around the limiting value 35v1 = 35(6, 5, 7). On page ?? we saw that this vector
represented the percentages

(33.3%, 27.7%, 38.8%)

and the distribution we can expect for the future will be:

� Customers in company A = 33.3% of the total.

� Customers in company B = 27.7% of the total.

� Customers in company C = 38.8% of the total.
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