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Abstract. The problem of phase ambiguity resolution in
global positioning system (GPS) theory is considered.
The Bayesian approach is applied to this problem and,
using Monte Carlo simulation to search over the integer
candidates, a practical expression for the Bayesian
estimator is obtained. The analysis of the integer grid
points inside the search ellipsoid and their evolution
with time, while measurements are accumulated, leads to
the development of a Bayesian theory based on a
mathematical mixture model for the ambiguity.
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1 Introduction

In the mathematical model of double-difference (DD)
global positioning system (GPS) observation there are
two groups of unknowns: baseline coordinates and
initial ambiguities. According to this model the
ambiguity vector should have integer components. Then
the problem is to find the correct estimate for the
ambiguity with integer components and the correspond-
ing estimate for the coordinates. A usual approach to
the ambiguity resolution is first to estimate coordinates
and ambiguities with no constraints, i.e. floating
solution, and then to apply some ‘suitable’ testing
procedure to decide whether the floating ambiguity
vector is compatible or not with one, and only one,
integer estimator; in the affirmative case the estimate of
the coordinates is repeated by fixing the ambiguity to the
value of the integer estimator. The methods Ratio Test,
FARA (fast ambiguity resolution approach; Beutler and
Frei 1990) and LAMBDA (least-squares ambiguity

Correspondence to: M. C. de Lacy

decorrelation adjustment; Teunissen and Kleusberg
1998) use this kind of approach. First Blewitt (1989),
then Betti et al. (1993), and more recently Gundlich and
Koch (submitted) proposed, as an alternative theory, the
Bayesian approach whose main characteristics are the
following:

1. It yields a posterior distribution for all variables,
discrete and continuous, conditional to the observed
quantities.

2. It takes into account the information contained in the
full covariance matrix derived of the least-squares
(LS) adjustment, i.e. the covariance matrix of the
floating solution.

3. It does not need to resolve the ambiguity vector.

4. It provides a solution without any further adjustment.

In this paper we continue this work, producing a
practical expression for the Bayesian estimator using
the Monte Carlo simulation to define the search ellipsoid
in which the integer candidates are contained. The
Monte Carlo simulation will allow us to obtain
approximated expressions for the Bayesian solution
and its covariance matrix. By studying the information
and the evolution with time of the position and shape of
the search ellipsoid in the bias vector space, we are urged
to develop a novel enlarged model where a new variable
is introduced, labeling the case under analysis as an
ordinary case where the bias vector has integer
components, or as one of the special cases where the
presence of other biases in the observations prevents us
from fixing them to integer values. Of course the two
cases will be discriminated only at a certain moment in
time when the accumulated information becomes
sufficient for that purpose.

It seems useful here to clarify that indeed the Bayesian
approach is not the only consistent probabilistic set-up for
the estimation of position and integer ambiguity para-
meters. On the contrary, the classical LS theory for nor-
mal variates has been suitably developed into a new
theory for integer LS models (cf. Teunissen 1999a, b), in
the framework of which a full description of the statistical
behaviour of the estimators is available. In other words,



the time when a testing procedure was used as estimation
tool (i.e. the selected integer ambiguity was fixed, dis-
appearing from the vector of the unknowns) has passed,
and the frequentist approach can offer nowadays a con-
sistent picture of the estimation problem as the Bayesian
approach can in principle do. This suggests the interesting
scientific question of how they compare to each other;
however, this is not the aim of the present paper, which is
considered by the authors as just a contribution to the
development of the ‘Bayesian way’ which still seems to be
incompletely mature. At the same time, it is because of the
flexibility of Bayesian theory that we come across the idea
that the alternative integer ambiguity (general real bias
vector) could be included into the estimation model and
we thought that it was useful to offer the argument to the
discussion of the scientific community. Therefore in the
present contribution we concentrate on the Bayesian ap-
proach applied to the ambiguity resolution problem using
the Monte Carlo simulation to define a search strategy
over integer candidates. The implementation of the
Monte Carlo method and analysis of the first results, in
comparison with the FARA method, are presented in
Sect. 3. The Bayesian theory for the mathematical mix-
ture model is explained in Sect. 4. This model is applied to
two numerical examples.

2 The Bayesian approach

GPS observational models, in linearized form, can be
written as

Y=Bir+Bb+v (1)
where

Y = vector of observables, in this case double differ-

ences

r = continuous parameter corresponding to station

position corrections, troposphere parameters, etc.

b = vector of biases which in agreement with model

should have integer components (in units of wa-
velengths)

B; and B, = design matrices for parameters r and b
derived from linearized observation
equations

v = vector of model noise, independent of r and b.

According to Bayes’ theorem, if an observation model
has the observable vector Y, the unknown parameters
(r,b), the prior distribution p(r,b) on the parameter
space and the likelihood function L(Y|r,b) describing
the observation process, then a new posterior distribu-
tion is generated in the parameter space with the rule
(Box and Tiao 1992)

p(r;b[Y) = KL(Y|r,b)s(r, b) (2)

where the ‘constant’ K is such that Eq. (2) satisfies a
standard normalization relation in (r,b) for fixed Y. It
is important to note that Eq. (2) says that observa-
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tions Y modify the knowledge of the prior distribution
of (r,b) into the posterior distribution p(r,b|Y).
Using the proprieties of the Bayesian theory, we
interpret p as a probability function with respect to
the discrete parameter b and as a probability density
function for the continuous parameter r. So Eq. (2)
can be rewritten as

~ L(Y[r,b)p(r,b)
PIY) = S~ e, b)p(r, b)d(r) ¥

where the summation is over the discrete values of b and
the integral is calculated over R".

From the posterior distribution we can draw a syn-
thetic knowledge of the variables of interest, e.g. a lo-
cation and a dispersion parameter. Concentrating for
the moment on the location, this can be either the pos-
terior mode (MAP) or the posterior mean, i.e.

s — Ely] — SnJFLOYIE DR B () W
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It is important to note the following:

1. To derive information on r it is not necessary to re-
solve the ambiguities; it is enough to sum over all
possible ambiguities with proper weights directly de-
rived from the likelihood function.

2. In order to perform any Bayesian inference it is al-
ways necessary to know the prior of (r,b). For the
sake of simplicity in the subsequent computations we
will assume that we have no prior information on
(r,b) and that both priors are independent. Then
Eq. (2) reads

p(e,BIY) = KL(Y[r. b)3()5(b) )

where

p(r) = c¢ improper

pb) =c Z d(b —b;) improper (6)
b;

where ¢ is a constant, b; is the integer ambiguity
vector and ¢ represents the Dirac distribution.
In order to obtain a practical expression for Eq. (4) we
rewrite the model of our estimation problem as

Y=Bir+Bb+v=4Ax+v (7)
where
A is the design matrix and x = (j) is the parameter

vector to be estimated. We will soon need the symbols
X = (E), the floating solution of the coordinates and

ambiguities computed from a standard LS adjustment,
and

-1
2 N Ny
Cox = 9 ( Nog  Nop

the variance—covariance matrix of this adjustment.
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Assuming Y = N(y, Cyy) to be a normal variate and
taking into account Eq. (6), Eq. (5) can be expressed as

pr,b]Y) oc e MY A0 L (Y-Ax) 25 (b—by) (8)

and, exploiting the ordinary decomposition of the
quadratic form at exponent, Eq. (8) is equivalent to

P, blY) oc e 2V D CIVY) | o el (x—%)

Z o(b —by) )
b;
Let us introduce the shifted variables
r=r—r
B=b—b
B, =b;—Db
B—B,=b—b

Then, keeping only the part depending on the sufficient
statistic (r,b), the other part is absorbed into the
constant as is customary for functions of Y only in
Bayesian theory, and Eq. (9) reads

. (NGG NGb)<r—f>
—5 =8 (b—b)"] N
l' b‘Y Ze “0 Npg  Npp b, —b
X 5(b—b])

—Lw(orp,)
=> e -5(b—by) (10)
B

where

o) [ 707 (e 3 ) (375
(11)

As it is shown in Appendix 1, we obtain the Bayesian
estimator
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It is important to stress the following.

drp = E{8r|Y} = —NGiNas (12)

1. Ngg;, Ngp, are known since they have been calculated in
the LS adjustment to obtain the floating solution and
they need to be used only once in Eq. (12).

2. In order to calculate Eq. (12) it is necessary to know

B = Z B (B;) (13)
B

where

LT
—5,201 VB
0

p(Br) =p(B;|Y) xe (14)

So, the problem is now reduced from the numerical
point of view to just that of averaging over integer
candidates, weighting them with their corresponding
probability. Indeed Eq. (13) is an infinite sum and
cannot be computed exactly, but we have to truncate
the summation; this is a quite substantial but
unavoidable drawback intrinsic to the problem. As a
matter of fact, also in the frequentist approach a
complete description of the estimator would imply
projecting a full normal distribution in the space of the
vector b onto the Ilattice of points with integer
coordinates. Given the shape of the distribution p(p,)
it is only natural to try to use a summation set or
characteristic ellipsoidal region

& = {B =b; —b.by integer; (T NB, < 03y} (15)

We will call O (for outer region) the complementary of
this region in lattice of .

When N, is small enough, there are many integer grid
points in &; in this case we propose that a Monte Carlo
simulation method be used to compute Eq. (13) and so
Eq. (12). To th1s aim we draw a sample of values b;
distributed as b; ~ N (b a3N1), by exploiting the rela-
tion (Jennings 1977, Press et al. 1992; Sheldon 1997)

bi:l;—i-TTZi (16)

where
b is the vector of floating ambiguities
T is the Cholesky factor of Cpp = a3N ! =TT
z is a vector of independent random numbers distributed
as a normal N(0, I).

Rounding every vector b; to the vector of the nearest
integer components, bf , and using the strong law of large
numbers, Eq. (13) can be approximated as

1 & .
um~%§;®ﬁ—w (17)

This approximation is introduced into Eq. (12) in order
to obtain the Bayesian correction to be applied to the
floating solution.

The same line of thought can be used to compute an
approximation to the covariance matrix of the Bayesian
solution. The covariance matrix of the distribution of
Eq. (3) is given by
Cargory = Cov(8r|Y) = E{(8rdr" — pyyymz, ) [YE  (18)
where p,y is the mean of the dr estimations conditional
to the observations and, as it is proved in Appendix 1,
the exact expression of this covariance matrix is

Coryors = 06N + NaNanCpp, N Neg (19)

We can again apply the Monte Carlo method to obtain
the approximated covariance matrix of f,

Cop, = Co,bm, b kz (b — -b)’ _”B"g (20)



where pg is given by Eq. (17); the result is then
substituted back in Eq. (19).
Finally, three points are worthy of comment:

1. The Bayesian solution depends in general on the
variable o3. When this is not known the theory has to
be modified as shown, for instance, in Betti et al.
(1993), although the direct use of the floating estimate
o] in the previous computations seems to supply a
suitable solution.

2. The Bayesian approach in its pure form considers as
outcome of the ‘estimation’ procedure the posterior
distribution of the parameters of interest (Box and
Tiao 1992). It is only to the extent of synthesizing the
information of this distribution that one is entitled to
reduce it to the knowledge of a few parameters. It is
customary in Bayesian literature to use the MAP
point together with the average of second derivatives
of the logarithm of the posterior (information matrix)
with respect to parameters. Here we have chosen the
more traditional posterior mean and covariance
because we are aware that the posterior of ér will be
multimodal and, moreover, the high-probability
regions around the maximo may still contain a sen-
sible probability, if the observations time is short
(Teunissen 1999a; Gundlich 2001). In this situation
we feel that mean and covariance are still more
descriptive of the coarse, overall spread of prob-
ability, because of the universal validity of the Tche-
bychef theorem.

3. The Monte Carlo approach presented here produces
two different types of approximations. One is classical
for Monte Carlo methods, yielding, for example in
Eq. (17) an error covariance

1
n=1> B - BB

I ar—1
o~ ayN;
m k

(1)

Since typically the diagonal of ¢{N ! is between 1 and
0.01 cycles (= 20 cm to 2 mm), as soon as k is larger than
103 the approximation can be considered as effective. The
other approximation is by the mechanism of sampling a
normal and then shifting the sample vector b; to the
nearest neighbour bl’. . This assigns to the final lattice
point bf the same probability of the normal distribution
N(b,a3N!) integrated over the square block of points
which are nearest to it. This approximation is more
effective if the characteristic & is large with respect to the
above blocks (see the discussion in the next section) and
possible in the spherical shape. For this reason we expect
the Monte Carlo approach to work much better if first
the space b is Z-transformed according to the LAMBDA
concept (Teunissen and Kleusberg 1998), thus perform-
ing a rounding of the critical regions. We intend to
perform that in future. Finally, despite the general
statement of Eq. (21) on the error covariance and its
approach to zero, one could be afraid that the Monte
Carlo sampling would be too slow in filling the regions of
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high probability and, more generally, one could ask how
fast this sampling is filling the integer lattice in B space.
This question is discussed in Appendix 2.

3 Implementation and limits of the Monte Carlo method

The Monte Carlo method has been implemented in
Bamba software (Betti et al. 1996) and applied to the
baseline Herreros—Cijancos belonging to a non-perma-
nent GPS network with geodynamical purposes in
Eastern Granada in the south of Spain (Gil et al.
2001). The test baseline is about 8.5 km long, the height
difference between Herreros and Cijancos stations is
close to 600 m, and measurements were taken using the
same receiver and antenna, SR9500 with antenna
AT302.

Data processing was performed using Bernese 4.0
(Rothacher et al. 1996) and Bamba software. Only L1
frequency observations from 16 h 15 m to 16 h 45 m
with 15 of sample rate were used. In this observation
period the satellite constellation was formed by the
satellites PRN 3, 17, 21, 22, 23 and 31. Satellite 23 was
adopted as reference satellite because it had the highest
signal/noise rate. Herrero has been adopted as reference
station. CODE ephemerides from the Astronomical In-
stitute of the University of Berne were included for the
computation. The Saastamoinen model with a standard
atmosphere has been used for the tropospheric refrac-
tion. All observations having a mask lower than 20°
were discarded.

After obtaining the floating solution, we simulated a
sample of 5000 ambiguities b; distributed as b; ~
(b,o3N 1) with dim b = 5 and rounded every ambiguity
to the nearest integer defining the discrete search space.
The results of the Monte Carlo approximation have
been compared with the FARA method. The choice of
using the Bernese software, in which the FARA method
is implemented, was made because this is in wide use and
rigorous in that it computes and exploits the full cov-
ariance information; moreover, this was the software
available to us. The authors are aware that more work
should be done in order to have a systematic comparison
with available methods. As for the choice of the Monte
Carlo samples: we had the feeling, supported by the
reasons explained in Sect. 2 , that any number above
1000 would do. In addition, we have seen that estimating
with 4000 or 5000 samples was giving practically the
same result, which we took as sign of success in the
convergence of the estimators.

The final ambiguities calculated by the FARA and
Monte Carlo methods are shown in Tables 1 and 2,
respectively. In Table 1 can be seen a discontinuous
behaviour in the ambiguity, showing jumps between
integer and floating ambiguities, that does introduce a
discontinuous behaviour in the coordinate estimator. In
Table 2 it is noted that the Monte Carlo method is
conservative and it tends little by little to one ‘particular’
integer. It is interesting to observe that the ambiguity in
general does not coincide with an integer value because
it is the average of a discrete distribution. Nevertheless,
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Table 1. Final DD ambiguities

calculated by FARA (cycles) Minutes Sat. 3 Sat. 17 Sat. 21 Sat. 22 Sat. 31
4 34 316 ~9.960 27 813 31048 52 799
5 34 316 ~9.960 27 813 31048 52 799
6 34 316 ~9.960 27 813 31048 52 799
7 34 316 ~9.960 27 813 31048 52 799
8 34 316 ~9.960 27 813 31048 52 799
9 34 316 ~9.960 27 813 31048 52 799
10 34 316.97 ~9959.65 27 813.14 31 048.39 52 800.49
1 34 317.24 ~9959.57 27 813.15 31 048.57 52 800.76
12 34 317.40 ~9959.52 27 813.13 31 048.68 52 800.90
13 34 317.26 ~9959.47 27 813.02 31 048.53 52 800.72
14 34 317.11 ~9959.44 27 812.91 31 048.40 52 800.47
15 34 316.87 ~9959.49 27 812.84 31 048.29 52 800.11
16 34 316.59 ~9.959.54 27 812.78 31 048.09 52799.75
17 34 316 ~9.960 27 813 31048 52 799
18 34 316 ~9.960 27 813 31048 52799
19 34 316 ~9.960 27 813 31048 52 799
20 34 316 ~9.960 27 813 31048 52 799
21 34 316 ~9.960 27 813 31048 52 799
2 34 316 ~9.960 27 813 31048 52 799
23 34 316 ~9.960 27 813 31048 52 799
24 34 316 ~9.960 27 813 31048 52 799
25 34 316 ~9.960 27 813 31048 52 799
26 34 316 ~9.960 27 813 31048 52 799
27 34 315.58 ~9959.85 27 812.73 31 047.50 52 798.50
28 34 315.55 ~9959.86 27 812.73 31 047.53 52 798.47
29 34 315.51 ~9959.87 27 812.74 31 .047.52 52 798.43
30 34 315.49 ~9959.88 27 812.74 31 047.51 52 798.39
Table 2. Final DD ambiguities -
calculated by the Monte Carlo Minutes Sat. 3 Sat. 17 Sat. 21 Sat. 22 Sat. 31
method (cycles) 4 34 317.372 ~9959.025 27 813.196 31 048.29 52 799.690
5 34 315.909 ~9959.155 27 812.876 31 047.49 52 797.493
6 34 316.299 ~9.959.006 27 813.973 31 047.588 52 798.193
7 34 316.72 -9 958.999 27 812.973 31 047.641 52 798.861
8 34 317.061 -9 958.999 27 812.996 31 047.873 52 799.459
9 34 317.452 ~99658.999 27813 31048 52 799.986
10 34 317.994 ~9958.974 27 813 31.048.117 52 800.607
1 34 318.157 ~9959.744 27 813 31 048.54 52 800.970
12 34 318.469 -9 958.368 27 813 31 048.891 52 801.047
13 34 318.254 -9 958.068 27 813 31 048.657 52 800.994
14 34 318.050 -9 958.005 27 813 31 .048.23 52 800.908
15 34 318.002 ~9 958.046 27 813 31 048.023 52 800.327
16 34 317.983 -9 958.335 27 813 31048 52 800.005
17 34 317.278 ~9958.840 27 812.998 31048 52 799.829
18 34 317.004 ~9958.986 27 812.986 31 047.988 52 799.122
19 34 317 -9 958.999 27 812.98 31 047.95 52799.013
20 34 317 -9 958.999 27 812.966 31 047.832 52 799.004
21 34 317 ~9959 27 812.972 31 047.782 52 799
2 34 317 ~9959 27 812.981 31 .047.743 52 799
23 34 317 -9959 27 812.992 31 047.755 52 799
24 34 317 ~9959 27 812.996 31 047.747 52 798.999
25 34 316.999 ~9959 27 813 31 047.747 52 798.994
26 34 316.999 -9959 27 813 31 047.78 52 798.987
27 34 316.99 ~9959 27 813 31 047.564 52 798.957
28 34 316.974 ~9959 27 813 31 047.462 52 798.926
29 34 316.915 -9959 27 813 31 047.294 52 798.835
30 34 316.828 ~9959 27 813 31 047.208 52 798.654

we expect that when the bias vector b is likely to attain
integer components the corresponding ambiguity will
drift close to the correct solution, while it will remain far
from grid knots if the true ambiguity is not really integer
(Betti et al. 1993). In order to check this fact, the integer
grid points generated by the Monte Carlo simulation

have been analysed after 4, 9 and 17 minutes. In Fig. 1
(four-minute observation period) it can be seen there are
some candidates for each component of the ambiguity
vector and no vector has probability close to one. In
Fig. 2 (after nine-minute observation period), for sa-
tellites 21 and 22 we find the integer value with prob-
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ability equal to one. But when we analyse the situation
after 17 minutes of measure before rounding to the
nearest integer (Fig. 3), we find that for satellites 17 and
21 the ambiguities generated by the Monte Carlo
method are far from the integer grid points but the va-
lues shown in Table 2 tend to —9959 and 27 813.
These results indicate that, within a short observation
span, we expect that there are some candidates inside
the search space. The shape of the search ellipsoid is
illustrated in Fig. 4a and the corresponding normal
distribution in Fig. 5a. In this case the mathematical
model with integer ambiguities works because it is not
really stringent, the Monte Carlo simulation works, and
the approximation to the nearest integer works as well.
After some minutes the shape of the ellipsoid changes
and so the normal distribution changes (Fig. 4b and 5b);

it may still contain more than one integer grid point but
some of them can be very close to the bounds of the
search ellipsoid. In this situation, the mathematical
model of integer ambiguities is still acceptable but the
Monte Carlo simulation does not work. In fact, our
Monte Carlo approximation is based on the approx-
imation i = NNs(x) with x distributed as a normal
N(u,0*) =g(x| p,0*) and p(i) =g(x|p,¢°) -9, and
where 0 is the grid step size. NN;(x) means the nearest
neighbour of x within the grid and g(x | g, ?) is a nor-
mal probability density. Indeed, such an approximation
holds reasonably when 6 < ¢ but it becomes too coarse
when ¢ > o.

Because of the elongated shape of the ellipsoid it
could happen that a few minutes later no integer grid
point is inside the search ellipsoid (Figs. 4c and S5c).
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Fig. 3 Integers selected by Monte Carlo
method after 17 minutes of observation
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Fig. 4 Three different shapes of the ambi-

Fig. 5. Three different shapes of the normal distribution

Now the mathematical model with integer ambiguities is
no longer tenable and we have to admit that our data
suggest that it is very unlikely that b can coincide with
any knot in the grid.

Reconsidering this behaviour, we find that it is
from the beginning that we have to build a model
admitting two possible alternatives, one where b is an
integer vector and another one where b has no integer
constraints, i.e. b is generated by other effects than
the simple initial ambiguity. It will then be the accu-
mulation of information with time and the corre-
sponding evolution of the characteristic ellipsoid that
will tell us which of the two alternatives is more
probable. This mixed model will be developed in the
next paragraph.

guity search ellipsoid

4 A mathematical mixed model for the integer-real
ambiguities alternative

According to the discussion of the last section, let us try
to design a new model larger than Eq. (1) where, among
the parameters, beyond (r,b) we introduce

o — 1

T\ F
o has the meaning of a discrete label variate and we
assume it to be a priori independent from r.

The posterior distribution of the parameters will now
be given by

if b is integer, b = by

if b is real, b € R" (22)

p(r,b,w|Y) = CL(Y|r,b, w)p(r)p(b, ) (23)

C being a constant such that Eq. (23) is a probability
distribution in (r,b, ®) for fixed Y. In order to describe
the a priori relation between w and b we will use the
improper (prior) distribution

( ) ifo=F
(24)

b, 0) = H(blw)i(w) o« {“IZ_b& Sb—b) fw=1

where o becomes a parameter controlling the prior
probability between the two alternatives /, F. Therefore
o is what is called in Bayesian literature a hyperpara-
meter (Box and Tiao 1992), and more correctly one
should write in Eq. (24)

p(b, »,2) = p(blw, x)p(w|o)p(a) (25)

In this section, for the sake of simplicity we will simply
assume that o is a variable ‘known from experience’ and
we will fix it to o = 90% ; only at the end of the



paragraph will we show how to deal with it in the
completely opposite hypothesis based on the use of a
non-informative prior for «. With this remark in mind,
the posterior distribution then becomes

— L (Sr+N; NGy B) Nog (8r+N- NG B)
prB oY) oce 0 T

,%BJ-NPB. ocpZé([}—B,) if w=1

(1—2)

X €
if o=F

(26)

From Eq. (26) all the necessary marginal distributions
can be derived; in particular we find

_LvﬁTNrﬁ
p=%Ye™ T wo=I
p(olY) = b (27)
. _l-a. (27’[)7681 _
L= =% N d
where m = dim p and
BTN 2m)iap
K=uy e '“1‘“)'% (28)
'3 r

We know that

— L (3r+ NGNGB Noa (8r+NgiNasB,)
p(8r|Y,(g :[) x CZe -”5 GGIYGhPr GG GG1YGbPI
B

—LBIN,p
xe X (29)
and

—L 3¢ (NoG—NesNyy NG )®
p(OrY, 0 = F) o Ce 7t o om e (30)

The derivations can be found in Appendix 3. From the
above relations, and considering that

p(orly) = Pp(dr|Y, 1) + (1 — P)p(8r|Y, F) (31)
one is then able to derive the Bayes posterior mean
org = E{or|Y} = RE{or|Y,w =1}

—|—(1 —PI)E{6r|Y,a):F}:P18rBI (32)

where orp; is exactly what we have found in Eq. (12),
while

Srpr = E{or|]Y,0 =F} =0 (33)

because without the lattice constraint, i.e. when o = f,
the best estimate is already the floating without any
correction.

Reasoning in a similar way (see Appendix 3) we can
derive the posterior covariance, which turns out to be

Corgor, = PICr + (1 — P)OINGE + (1 — Py)
X (O'(ZJNECI;NGbNr_legNG_GI — P]SI'B]SI'Z];])
(34)
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where C; is the covariance matrix [Eq. (19)] correspond-
ing to the integer case already discussed.

Therefore, the mixture model should refine the
Monte Carlo method in the following way:

1. The floating solution and its covariance matrix will be
derived from the LS adjustment.

2. A sample of ambiguities normally distributed will be
generated by the Monte Carlo method and every
value will be rounded to the nearest integer defining
the ambiguity search space.

3. All possible integer combinations will be made
to compute P;, and then summing over all these
combinations we will be able to obtain the exact ex-
pression for Eqs. (32) and (34).

Summarizing, it is interesting to stress that, after all,
the application of this model can follow any floating
solution, with in addition an indicator of what has to
be the search space, which in the present work is
derived from an application of the Monte Carlo
method.

This procedure, based on the mathematical mixture
model following the steps 1, 2, and 3, has been applied to
two examples. The first one is the baseline Cijancos—
Romeral belonging to the non-permanent GPS network
already mentioned in Sect. 3. Its length is about 5 km
and we have processed the GPS measurements in the
same manner as explained in Sect. 3 for the baseline
Herreros—Cijancos. The second example is the proper
baseline Herreros—Cijancos. In both cases we have built
the mixed model starting from the floating solution of
the Bernese software because we wanted to investigate
with our new tool the behaviour of the ambiguities over
time.

The results corresponding to the first test baseline
in terms of P; are shown in Table 3. We can observe,
accordingly to FARA (Table 4), a regular evolution of

Table 3. Mixed-model analysis of Cijancos—Romeral basis

Minutes Py 1-P;
1 0.968 0.032
2 0.948 0.052
3 0.001 0.999
4 0.135 0.865
5 0.999 0.001
6 0.999 0.001
7 0.999 0.001
8 0.999 0.001
9 0.999 0.001

10 0.999 0.001

11 0.999 0.001

12 0.999 0.001

13 0.999 0.001

14 0.999 0.001

15 0.999 0.001

16 0.999 0.001

17 0.999 0.001

18 0.999 0.001

19 0.999 0.001

20 0.999 0.001
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Table 4. Final DD ambiguities (cycles) calculated by FARA for
Cijancos—Romeral basis

Minutes Ambiguity vector

1 (=12 522.42, 32 556.57, 23 872.49, —23 660.5, —2283.66)

2 (927.41, 8680.77, —23 871.79, —10 211.88, =26 155.7,
—24 958.44)

3 (924.75, 8671.01, =23 871.43, —10 216.78, —26 155.86,
-24 961.14)

(924, -19 091, -23 871, =10 222, -26 156, —24 963)
(924, 8671, =23 871, =10 222, =26 156, —24 963)
(924, 8671, =23 871, =10 222, =26 156, —24 963)
(924, 8671, =23 871, =10 222, =26 156, —24 963)
(924, 8671, =23 871, =10 222, =26 156, —24 963)
(924, 8671, =23 871, =10 222, =26 156, —24 963)
(924, 8671, =23 871, =10 222, =26 156, —24 963)
(924, 8671, =23 871, =10 222, =26 156, =24 963)
(924, 8671, =23 871, =10 222, =26 156, —24 963)
(924, 8671, =23 871, =10 222, =26 156, —24 963)
(924, 8671, =23 871, =10 222, =26 156, —24 963)
(924, 8671, =23 871, =10 222, =26 156, —24 963)
(924, 8671, =23 871, =10 222, =26 156, —24 963)
(924, 8671, =23 871, =10 222, =26 156, =24 963)
(924, 8671, =23 871, =10 222, =26 156, —24 963)
(924, 8671, =23 871, =10 222, =26 156, —24 963)
(924, 8671, =23 871, =10 222, =26 156, —24 963)

N J G G PG G U
SOOI UNPEWNOD OOV B

the ambiguity estimate with time. Only at the begin-
ning P; does an irregular behaviour due to a new
satellite arise after 1.30 minutes of observation. In
contrast to this example, we can analyse the erratic
behaviour of the ambiguity vector in the Herreros—
Cijancos baseline (Table 1). The results provided by
the mixed model in terms of P; are shown in Table 5.
These indicate that for a short observation period
there are some integer candidates inside the search
space of the ambiguities and in this case P; is high
enough to justify the belief of an integer bias. When
observations are accumulated, the shape of the char-
acteristic ellipsoid & changes and P; decreases, closing
to zero. This means that b is not centered perfectly on
an integer knot and so no integer grid point is inside
the search space. Later, only one integer grid point
appears in the characteristic ellipsoid. In a situation
like this, the Bayesian correction orp given by Eq. (32)
will compensate for this phenomenon.

It is interesting to note that finding a basis for which
we were sure that one and only one (over a time span of
20 minutes) integer bias could be chosen was not im-
mediate; this brings us back to the question of the ‘a
priori’ value of a. We would like to close the section by
outlining the procedure to adopt in the case that o is
considered as a hyperparameter, for instance with a non-
informative prior.

To this aim we first observe that all the formulas
worked out until now, and in particular from Eq. (27) to
Eq. (34), still hold true as they are with the only proviso
that all distributions P(-]Y) and averages E{:|Y} be
substituted by P(-|Y,a) and E{-|Y,a}. Accordingly, we
assume that

pl)y=1 0<a<l (35)

Table 5. Mixed-model analysis of Herreros—Cijancos basis

Minutes P, 1-P;
4 0.999 0.001
5 0.999 0.001
6 0.999 0.001
7 0.999 0.001
8 0.999 0.001
9 0.031 0.969

10 0 1

11 0 1

12 0 1

13 0 1

14 0 1

15 0 1

16 0.996 0.004

17 0.999 0.001

18 0.999 0.001

19 0.999 0.001

20 0.999 0.001

is the non-informative prior for o, we have only to
integrate the various quantities as functions of o, to
obtain their posterior marginal distribution or mean,
conditional to Y only.

For instance, Eq. (27) gives us P, = P(w =1|Y, )
and we can write
1
P = plo = 1Y) :/Pw—I|Yoc)()dcx (36)

Accordingly, we write Eq. (32) as
drp(o) = Pr(a)drp; (37)
and the final result is
|
/P1 ) 8rp; = Pidry; (38)
0

In a similar way, Eq. (27) holds true in the same form,
but with P; given by Eq. (36). Therefore the only
exercise to perform is to compute the integral of
Eq. (36) from Eq. (27), taking into account that K is a
function of « too; the explicit result is

q
PP=—-1<1- 1
1 q—l{ 1 ogq} (39)
where
VIN —5=BINB
= E —m € “0 40
1 (2n)2ay) (40)

5 Conclusions

In this paper we first returned to the Bayesian
approach of GPS baseline estimation (Blewitt 1989;
Betti et al. 1993), showing how the Monte Carlo



method provides a possible practical tool to define a
finite set of knots of the lattice of integer bias vectors
on which a reasonable approximation of the infinite
series, inherent in the theory, can be obtained. The
technique proposed is not free of the further approx-
imations and we feel that improvements are possible
and deserve further research.

In performing this work we realized that there were
cases in which by forming b in any integer knot we were
in fact jumping into an area of extremely low prob-
ability. Indeed, if we say that the integer ambiguity
model is correct, any estimation method will give us
back pure integer estimates; a frequentist approach will
choose one particular integer set, a Bayesian approach
will give us a posterior distribution with a single spike
practically equal to 1. However, if we suspect that the
model may be wrong then we can build, for example in
the Bayesian framework, a more general model where
according to the data we can choose from two alter-
natives: b is integer (w = 1) or b is real (w = F). This is
the mathematical mixture model worked out in Sect. 4.
A justification of this mixed model is in that we can
imagine that a number of effects not perfectly accounted
for by the model of Eq. (1) enter as systematic factors in
v, which however is modelled as a pure random noise.
As we know, this introduces biases in the LS estimation
of parameters, so that b might not be perfectly entered in
an integer knot. In Bayesian terms, we can say that re-
stricting the prior distribution of b to the integer lattice
is not consistent with the data.

Of course, if 3N is still large (a characteristic el-
lipsoid & includes several knots of the lattice), we are not
able to discriminate between the two cases, but when
more observations are accumulated with time it is likely
that that only one knot, b;, will have a high posterior
probability under both models w =7 and w = F; in
frequentist terms we could say that only b; falls in the
characteristic ellipsoid. If this situation continues while
o3 N~! shrinks, we can claim that w = [ is plausible, if on
the contrary at a certain moment the posterior prob-
ability of b; drops (i.¢. if it slips out of the ellipsoid &) we
can say that a significant bias with respect to the integer
ambiguity model is increasing. The Bayesian approach
can compensate automatically for this phenomenon and
in addition provides a good index, namely P;, to monitor
which of the two models is prevailing with time; when
P, — 01t is the floating model which better interprets the
data, and when P; — 1 the opposite is true.

Appendix 1

We want to prove how, from the posterior distribution
of Eq. (10), we can derive the posterior mean and its
covariance matrix. Let us consider the quadratic form of
Eq. (11) written as

¥ (8r,B;) = or’ Ngadr + 281" N, B; + B} NisB; (A1)

After some manipulations, Eq. (A1) can be expressed as

91

‘P(Sr, BI) = SI‘TNGG(SI‘ + 25ITNGGN5éNGbBI
+ B/ NsNgNaoB;

+ B/ (Nos — NogNgeNas)B; (A2)

Calling N, = Ny, — NogNGENG, Eq. (A2) can be written
as

W (8r, ;) = (3r + NyaNanB;) Noc(8r + NosNanBy)

+ B/ Ny (A3)
Therefore the posterior distribution will be given by

*ﬁ(ﬁHNg(‘;Ncb B;)" Noc (8r+NgANGsB;)
0

p(3r,B[Y)oc> 3(B—P,)-e
0

1 gr
—5,2P N:B;
0

X e (A4)
and from Eq. (A4) we can derive
pBr[B = By, ¥) oc ¢ T Nab Necldrado)
7$BTNrBI
p(B=B[Y) e 0 (A6)

From Egs. (A6), (A4) and (4) the expression of the
Bayesian estimator becomes

org = E{8r|Y} = Ep {Es{5r|B;, Y}}

%B]TNVBI

Zlh NG_G]NGbB[ e
—52BI N,By
2pe "
= —Ng¢NGrE{B;}

(A7)

which does coincide with Eq. (12), as it was to be
proved.

The covariance matrix of the distribution of Eq. (3) is
given by

Caryar, = Cov(dr|Y) = E{(3rdr" — s yn, )Y} (A8)

where g,y is the mean of the ér estimations conditional
to the observations.
From Eq. (12), Eq. (A8) becomes

Coryors = E{88" |Y} — NgiNasmg g NocNoe (A9)

and

Coryors = Ep, {Esc{8r8t” |B;, Y} — NgiNeomy g NocNoe
= Ep, {cov(8r|B;, Y) + NoNaoB B NooNog Y}

— NgeNaoby, i NoNge (A10)
Since we can put
Cop, = E{(B,B; — 1y, n5)|Y} (ALT)
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we derive the exact formula for the sought covariance
Canars = 03NGG + NaoNavCyp, NocNog (A12)

Appendix 2

Let us consider the splitting of Eq. (13) into a finite sum
and a rest

Mg, = Z Bir(B;) + €

b€

(A13)

where the finite sum can be considered as an approx-
imation of pg and

€ = Z B.r(B;)

BcO

(A14)

We can substitute this term in Eq. (13) with a finite sum
over random B, and these reach a maximum norm (in
the natural covariance metric ¢;2N,) which defines the
maximal &Y including all the visited knots. The
corresponding error for the outer (non-visited) knots is

€ = Z B.r(B;) (A15)

B0

and we would like to relate this to the dimensions &k of
the sample. We will do that by considering a kind of
relative error coefficient
, € Ne
E{BITNVB[}

where the factor o3 is cancelled between numerator and
denominator. We have, by the Schwartz inequality

Zp,,pjeoM ﬁ,TN,BJ -p(B;) - p(B))
Z[}, ﬁ]TNrﬁl -p(B;)

[zmm¢ﬁﬁimmr

< T
Zp, B; N:B; - p(B;)
ZB,GOM BITNVBI -p(B;)
Zp, BITNrBI -p(B;)

Let us explicitly note that in Eq. (A17) the ZI}I in the
denominator runs over all the knots of the lattice in f;
space.

Now, for the sake of finding an approximate value,
we substitute the summation with integrals and we note
that we come out with averages over the 2 (m = dim )
distribution in both the denominator and numerator,
although this is truncated to the value

(A16)

RE? =

SP{B1€0M}

M= LBTNBIE = (NP <)) (AIS)
0

Namely, we find

BTN
wa BTNrB 2” mﬁ
r —Lp7NB
fRM I} ]\[rl3 -C % dmﬁ

Zp,eoM B[ N,B; - p(B;)
Z[}, B[TNr|31 -p(B;)
e e

= p{imia 2 & (A19)

For the same reason we can use the approximation

piBe 0"} = plyp, > &M}

Moreover, since 2, and y2., are not that different, from
Eq. (A17), summarizing, we can write

RE < p{y2 > &M}

Now, Eq. (A21) is an inequality between two positive
random variables, so in order to give a numerical
appreciation of it we could take the average of the right-
hand side, namely

E{p(1y, > ")} = E{1 — F,(eM)}

where F,, is the distribution function of 2, while & is a
random variable

(A20)

(A21)

(A22)

M= Max;—1,..x&;, & = HD(an) (A23)
with density
Su(&) = kB (&) (13, = Snl€) = F(8)) (A24)
Accordingly, Eq. (A22) gives
+00o
E(1 = Fu@)) = [ 11~ Bu(hES (@) E)de
k 1

Relations (A21), (A22) and (A25) indicate that

1
E{RE} < 1 (A26)

Basically Eq. (A26) indicates that the error of the Monte
Carlo method in estimating 1 is due much more to the
inaccuracy of the empmcal estimates of the probablhtles
inside the encompassing ellipsoid &" which are of O( \/.)
than to the completely neglected external zone OM.

Appendix 3

In this appendix we derive the marginal distributions of
Egs. (27), (29) and (30) and the covariance matrix of
Eq. (34) from Eq. (26).
— BTN»‘B
p(bolY) = [ plar,p.of¥)d(or) e 7
y {azm(ﬁ—m

fo=1I

A27
fo=F ( )

(1—a)



pla]Y) = / dp / p(r. B, o|Y)d(57)

1 pT
5,201 VB
xdp e

(211)%0”‘
1 —o) 2%
(I—a) =

where m = dimf. Notice that in Eq. (A28) use has been
made of the relation

fw=1
x (A28)

fo=F

— BTNrB 7;7BTNVBI
[ o pap—e (A29)
To normalize Eq. (A28) we can write
’7‘3[ NVB[ 2 % m
K = aZe % (1 —0a)- (2n)" % (A30)
P N |
and we then have Eq. (27)
Z e*;l(zllflrt’\’r[‘/
B _
ploly)=* w0 (A31)
(1—q)- &% __p

K/IN]

In particular, the posterior probability for the case in
which the bias vector is due only to the ambiguity terms,
and the information available is sufficient to find their
integer values, is

—5Bi Ny
e o

(A32)

Therefore

pr,BY) = p(dr,B,0[Y) =D p(r,Blw,Y) - p(w]Y)

(&)

= p(or, Y, 1)P; + p(dr, BY, F)(1 — P;) (A33)

As can be seen, Eq. (A33) depends on a combination of
the posterior distribution of the integer case and the
posterior distribution of the floating case. In the integer
case, the posterior distribution of the parameter &r is the
posterior marginal of

p(8r7 B‘Y71) = p(8r|B, YJ)P(NYa I)

c (NG NasBy)" Noa (3r-+NgiNesby)
=(Ce o

—5BI By
y 2pe
2 ¢

i.e. it coincides with Eq. (A4). Moreover, the integral
over B of Eq. (A34) gives Eq. (29).
In the floating case, the posterior distribution is
p(ﬁr,B|Y,F) :p(srvaaF) 'p(vaF)
(r+N;ANGsB) N (3r+N;ENesB) *ZG%BTNI-B
.e 0

o(B— B;)

Y
ﬁﬁ/ N.B;

(A34)

1
T2
xe 200

(A35)
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which again coincides with the standard floating
distribution. By integrating over § we obtain Eq. (30),
although we will avoid the explicit use of this
distribution. Then the Bayesian estimator of the
coordinate vector for the integer case can be written as

81‘BI = E{8r|Ya[} = EB{E&-{SI‘“‘, Y71}|1}

LB N.B;

Zp, Bre
ZB efﬁB;—Nrﬁl
'l

exactly as before in Eq. (12); for the floating case we
have

= —NgiNGy (A36)

dtpr = E{8r|Y,F} = Ep{Es{0r|B, Y, F}|F}
= —Eg{Ng¢NauBIF} = —NgGNayE{BIF} =0
(A37)

because

7%67-]\/"'}

PBIY,F)oce ™ " = N(0,a5N, ") (A38)

Therefore, in the mixed model the Bayesian posterior
mean of or is expressed by
8[’3 = P]E{SI"Y,I} + (1 — P[)E{SI’|Y,F} = P[&l’Bl

(A39)
which coincides with Eq. (32), and which means that
when the probability of obtaining the integer ambiguity
is small the Bayesian estimator moves close to the
floating estimator derived from the LS adjustment; when
it is high it goes towards the pure integer estimator.

Moreover, in this mixture model the posterior covar-
iance matrix is given by the expression

Chryor, = E{Or8r” |Y} — drpdrj (A40)

where

E{ordr” |Y} = PE{Srdr” |Y, I} + (1 — P)E{oror” |Y, F}
(A41)

with

E{ordr”|Y, I} = C; + drpdrh, (A42)

In the last formula C; is the covariance matrix for the
integer case and its expression is equal to Eq. (A12).
As for the floating case, we find
E{ovdr"|Y,F} = Eg{Es{8rSr”|Y,B, F}|F}
= Ep{03NGg + NogNasBB' NogNoolF }
= 03(Ngg + NogNanN,~ NogNg)
(A43)

Combining Egs. (A42) and (A43) and substituting into
Eqgs. (A41) and (A40), the covariance matrix in the
mixture model is given by the somewhat more
complicated formula
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C = PCy + Pidrpdry, + (1 — P)ogNG:
+ (1 — P[)G%N&éNGbeleGNE;CI; — PIZSI'BISI‘EI
= P,Cr + (1 = P1)ogNgg + (1 — Fr)

x (6gNGENGy N Ny NGk — Prdrgdrk)) (A44)

which coincides with Eq. (34).
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