REDES GEODÉSICAS Y CARTOGRAFÍA MATEMÁTICA

Ingeniería en Geodesia y Cartografía (Hoja 4)

 Demuéstrese que las coordenadas cartesianas de un punto P en el sistema de referencia definido en su sección meridiana del elipsoide (elipse de semieje mayor a y aplanamiento α), donde el eje y coincide con el eje menor del elipsoide, vienen dadas por:

$$\begin{cases} x = a \left(C + \frac{h}{a} \right) \cos \varphi \\ y = a \left(S + \frac{h}{a} \right) \sin \varphi \end{cases} \qquad C = \left[\cos^2 \varphi + \left(1 - \alpha \right)^2 \sin^2 \varphi \right]^{-\frac{1}{2}}; S = \left(1 - \alpha \right)^2 C$$

siendo φ la latitud geodésica del punto y h la altitud elipsoidal

- 2. Sea un punto de latitud geodésica $\varphi = 28^{\circ} 45' 36''$ y altitud elipsoidal h = 2326 m respecto del elipsoide de semieje mayor a = 6378140 m y aplanamiento $\alpha = 1/298.257$. Calcular:
 - (a) Las coordenadas cartesianas x e y en la elipse meridiana.
 - (b) La distancia desde el origen ρ y la latitud geocéntrica φ' .
 - (c) Las coordenadas cartesianas del punto proyectado en el elipsoide según la normal elipsoidal
 - (d) El ángulo de la vertical υ .
- 3. Demostrar que el ángulo de la vertical en un punto P de la superficie del elipsoide de latitud geodésica φ se calcula por la expresión:

$$\tan v = \frac{q \sin 2\varphi}{1 + q \cos 2\varphi}; \quad q = \frac{2\alpha - \alpha^2}{1 + (1 - \alpha)^2}$$

4. Determinar la distancia espacial entre dos observatorios del mismo meridiano con latitudes geodésicas $\varphi_1 = 30^\circ 40' 18'' \text{ y} \quad \varphi_2 = 43^\circ 36' 42'' \text{ y}$ altitudes elipsoidales $h_1 = 2075 \text{ m} \text{ y} h_2 = 195 \text{ m}$ respectivamente.