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ABSTRACT 

To estimate ionospheric delays from the Global Positioning System (GPS) 
measurements, satellite and receiver equipment biases have to be modeled. This paper 
presents a procedure based on the least squares (LS) approach, which implicitly takes 
into account these equipment biases in the estimation of the ionospheric effect. The second 
part of this work deals with the interpolation of the ionospheric correction from a 
permanent GPS network to a single frequency GPS user. The results obtained show that 
for 10-cm position accuracy the ionospheric delay can be successfully interpolated when 
the GPS user is within 40 km of the GPS permanent network. 

 
K eyw ord s :  GPS, ionospheric delay, pseudorange electronic bias, interpolation 
 

1. INTRODUCTION 

GPS pseudorange and phase observations depend on the distance between satellite and 
receiver, ionospheric and tropospheric effects, satellite and receiver clock offsets, phase 
ambiguities, and satellite and receiver electronic biases. The main obstacle in the 
estimation of the ionospheric TEC (Total Electron Content) from dual frequency GPS data 
is the effect of the pseudorange electronic biases while the carrier phase equipment delays 
are absorbed by the ambiguity parameters.  

A pseudorange bias is present for each of the two GPS frequencies and the difference 
between them is called differential code bias (DCB). Several authors have studied the 
problem of estimating the TEC and the differential code biases. Coco et al. (1991) 
represented the vertical TEC using polynomial coefficients. Three years later, Sardon et 
al. (1994) used a Kalman filtering approach to estimate the TEC and the DCBs. At the end 
of 1996, CODE (Center for Orbit Determination in Europe) began to produce daily global 
ionosphere maps (GIMs) using a spherical harmonic expansion to represent the TEC 
(http://www.aiub.unibe.ch/ionosphere). In 1999, Schaer (1999) studied the time series of 
the coefficients of the expansion into spherical harmonics used to represent the TEC.  
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Given the increased number of permanent GPS stations becoming available over the 
last years, the interpolation of ionospheric corrections from reference stations have been 
studied as part of the virtual GPS reference station concept by Van der Marel (1999) and 
more recently by Odijk (2002). Obviously, studies have been of particular interest in the 
framework of RTK (Real Time Kinematic) positioning (Fortes et al., 2003).  

In this paper, the ionospheric effect estimation from dual frequency GPS 
measurements is discussed. In Section 2, the dual frequency GPS observation equations 
are described. In Section 3, a procedure based on LS theory is combined with a global 
ionospheric model, such as the Klobuchar model or IGS ionospheric model, to estimate 
the ionospheric delay considering the differential electronic biases. In the second part, the 
perfomance of the ionospheric corrections, estimated and interpolated from GPS reference 
stations to a single frequency GPS user in an area encompassed by the network, is tested. 
In particular, this method is applied to two test data sets. The first data set is from an 
observation campaign of a GPS network established in southern Spain to monitor crustal 
deformation. The second is from the Lombard permanent GPS network in Italy. In both 
cases, rather short observation periods are used. The reason is that we are trying to 
simulate a “service” provided to a single frequency GPS user who typically tries to 
minimize the observation time for each station. The results are presented in Section 4.  

2. OBSERVATION EQUATIONS AND THE EULER-GOAD MODEL 

In the sequel we shall consider the following model for GPS carrier phase and 
pseudorange observables specific to a dual frequency receiver j and a satellite i (i.e., for 
undifferenced data) for a generic epoch t (Teunissen and Kleusberg, 1998):  
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where  and  are the code pseudoranges; 1
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jΦ  are the recorded carrier 
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of the centre of mass of the satellite; jx  is the position vector of the terrestrial point; i
kdx  

is the eccentricity vector of the transmitting antenna phase center relative to the 
pseudorange measurements at frequency ; kf kjdx  represents the eccentricity vector of 

the receiver antenna relative to the pseudorange measurements at frequency ; kf
i
kxδ  is 

the eccentricity vector of the transmitting antenna phase center pertaining to the carrier 
phase measurements at frequency ; kf kjxδ  represents the eccentricity vector of the 
receiver antenna phase center pertaining to the carrier phase measurements at frequency 

.  kf
In general, the eccentricities relative to pseudoranges and carrier phases are different 

since the effective antenna phase centers are different.  
i
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the satellite and receiver generated signals;  are the integer carrier phase ambiguities 

at frequency ; 

i
kjN

kf 1ε , 2ε , 3ε , 4ε  are the measurement noises; c = 299792458 m/s is the 
speed of light.  

The GPS system frequencies used in the above equations are the following: 
 Hz;  Hz, with f0 = 10230000 Hz; 1 0154f f= × 2 120f = × 0f 1 1c fλ = , 2 2c fλ = . 

Some approximations can be assumed in Eqs.(1) in order to express them in a more 
suitable form:  

1. The differences between the frequency dependent pseudorange and carrier antenna 
phase centers (both in receiver and satellites) are neglected. Therefore, the 
geometric distance between the satellite antenna and receiver antenna can be 
written as:  

 ( ) ( )i ii
j j jD x dx x dx= + − + , (2) 

that is to say, this geometric distance is assumed to be independent of the 
frequency and is the same for pseudoranges and carrier phases.  

2. The multipath terms and electronic biases are ignored.  
3. It is possible to distinguish between frequency-dependent and non-dispersive 

terms. The satellite-receiver distance, the clock terms and the tropospheric delay 
belong to the last group. They can be lumped together into one single term:  
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This term would also include any other delay which affects all data identically, 
such as the effect of selective availability (SA). 

The frequency dependent part can be split into two terms: the ionospheric delay effect 
at frequency  that is approximated by the first order term of a Taylor series expansion; 

and the ambiguity biases . This last term is formed by lumping together the non-zero 
initial phases and the integer carrier phase ambiguities, that is:  

kf
i
kjb

 , . (4) ( ) ( )1 1 0 1 0 1
i
jN

Keeping in mind these simplifications, Euler and Goad wrote the carrier phase and 
pseudorange observables specific to a receiver-satellite pair for a generic epoch in the 
following way (Goad, 1985):  
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where ( )2
1 2K f f= . 
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It is important to stress that each of the equations in (5) is known to be biased by a 
constant term which represents the travel time of the signal through the circuitries of the 
receiver and satellite. The main source of error in the estimation of TEC (Total Electron 
Content) from dual frequency GPS data is the effect of these electronic biases. It is known 
that the combined receiver and satellite DCBs can be up to several nanoseconds. Sardon 
and Zarraoa (1997) studied DCB stability from day to day. They found a variation in the 
GPS satellite biases relative to the mean of less than 0.1 ns, while for the receiver the 
difference between estimates in consecutive days is below 1 ns. As a consequence for 
short periods of time, for example one hour, we can consider the electronic biases to be 
constant.  

3. ESTIMATION OF THE IONOSPHERIC EFFECT  

3 . 1 .  A  m a t h e m a t i c a l  m o d e l  t a k i n g  i n t o  a c c o u n t  t h e  
d i f f e r e n t i a l  c o d e  b i a s e s  

Since our goal is to estimate the ionospheric delay, we consider the Eqs.(5) 
introducing the pseudo-range electronic biases  and : 1

i
jQ 2
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and lumping together the carrier phase electronic biases, integer ambiguity and the non-
zero initial phases of the satellite and receiver into  and , defined as:  1
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that is,  
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We can consider the observations as a function of time during a period of nt epochs. 
To remove the differential code biases we multiply these observations by (I − Pe), where I 

is the identity natrix and Pe is the projector, 1 t

t
ee

n
=Pe , with (1,1, 1 te = … ) . In this way, 

the mathematical model specific to a receiver i and a satellite j will be:  
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In the least squares (LS) adjustment our unknown parameters become i
jρ , i

jJ ; the 
vectorization of the various quantities above is accomplished with respect to the index t 
(time). If we put:  
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indeed these parameters share the property  
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As we have projected our observations into the manifold of the admissible values for 
the observables, we can assume that the stochastic model associated with Eq.(9) is given 
by  

 , (12) 

1

22
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)where (diag , , ,Pk k kq q q=Q … k , with k = 1,2 and dim Pk t tn n= ×Q . We have 

considered , q1 = 105 and q2 = 104. This is equivalent to a noise of 60 cm 
for the P1 code and 20 cm for the P2 code. The noise of code observations depends on the 
receiver. In non-cross-correlation receivers, both codes present the same level of accuracy. 
However in cross-correlation receivers the noise of one code is bigger than the other. We 
chose the above values in order to represent the most pessimistic situation. Of course, 
such values are fairly pessimistic with respect to present perfomances and even more to 
the results expected in a few years. However, to avoid making our error estimates of 
ionospheric delays too optimistic, we prefer to be as conservative as is reasonably 
necessary.  

2 2
0 0.002 mσ = 2

Applying the LS theory, our problem is reduced to finding the minimum of the 
function:  
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where  and  are the inverse of the diagonal elements of the weight matrix; 1
1q− 1

2q− η̂  and 

λ̂  are the LS estimator of η  and λ , respectively. 

Computing the partial derivates of θ with respect to η̂  and λ̂ , equalling them to zero 
we find the following system: 
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Writing this system in matrix form, we get: 
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Finally, the LS solution we are looking for is: 
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A procedure based on LS theory to solve the Euler-Goad equations is explained in 
Appendix. One interesting point is to write the solution as we have done in this Appendix, 
that is to say one can trace explicitly where and how the electronic biases end up in the 
estimates of smoothed pseudoranges  and of the ionospheric delays ( )ˆ i

j tρ ( )1̂
i
jJ t . It is 

important to note that the difference between the solution given by Eq.(18) and Eq.(A18) 
minus the mean of Eq.(A18) is at 0.1 mm level.  

Applying the covariance propagation law, the covariance matrices of the unknown 
parameters are obtained:  
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It can be observed that in both cases the covariance matrices do not depend on time 
and Eqs.(20) and (21) numerically coincide with the first term of Eq.(A20).  

3 . 2 .  A n  a p p r o a c h  t o  m o d e l l i n g  t h e  i o n o s p h e r i c  e f f e c t  

From the above paragraph we have obtained ( ) 1
ˆ i

jJλ = −I Pe . This means, the 
estimate of the difference between the ionospheric effect at each epoch minus the mean of 
the ionospheric correction over the observation period. In order to obtain the estimate of 
the ionospheric correction at each epoch we propose to model this mean as the mean of an 
ionospheric model; in our case we have used the Klobuchar model (Leick, 1995) and the 
ionosphere model implied by IONEX TEC MAPS (ftp://cddisa.gsfc.nasa.gov/ 

gps/products/ionex). In this way, the estimate of the ionospheric effect, ˆi
jI , between a 

single receiver j and a single satellite i is given by: 
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i i

jj jI J= − +I Pe
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with  

 ( )
1

1mod mod
tni i

j j
t t

t
n =

= ∑ , (23) 

where  is the ionospheric delay between the receiver j and the satellite i 
computed from an ionospheric model. Of course, the errors in this model may propagate 
into our solution. However since the model is good at long wavelengths and the average 
operator further smooths out such errors, we expect acceptable results from such an 
approach.  

( )modi
j t

The procedure explained in this section has been implemented. First results obtained 
from this method are presented in this paper. As the main goal of the work is to study 
whether or not a permanent GPS network could provide the ionospheric correction to 
single frequency GPS users, the first tests regarding the interpolation of Eq.(22) have been 
carried out and are presented in the next section.  

4. FIRST RESULTS AND DISCUSSION  

4 . 1 .  T h e  d a t a s e t  

In 1999 a GPS network was established to monitor the crustal deformations in the 
Granada Basin (south of Spain, Gil et al., 2002). GPS surveys were carried out in 1999, 
2000 and 2001. In this work, a GPS data set belonging to session 175 (23 June 2000) was 
used to test the procedure explained in Section 3. In Fig. 1 the distribution of points within 
the network for session 175 can be seen. For our numerical tests we have supposed that 
this configuration corresponds to a hypothetical GPS network where points 5, 8, 25 and 22 
are considered as permanent GPS stations and point 11 represents a single frequency GPS 
user. The following summarizes the data set used: 

– Day: 23-06-2000.  
– Observation time span: from 15:40:00 to 16:19:45 UTC.  
– Sample rate: 15 seconds.  
– Cut-off angle: 15°.  
– Dual frequency phase and code receivers. In particular, Leica SR399 receiver with 

internal antennae at points 8, 22 and 25 and SR9500 receiver with external 
antennae AT302 at points 5 and 11.  

– Satellites tracked by all stations: PRN 1,PRN 4, PRN 16, PRN 18, PRN 19, 
PRN 27.  

– No cycle slips and outliers are present in the data set.  
– The precise coefficients α and β of the Klobuchar model determined by Code 

analysis center (http://www.aiub.unibe.ch/download/CODE).  

Stud. Geophys. Geod., 49 (2005) 71 



M.C. de Lacy et al. 

22
km

9 km

22 km

30km

2
0

k
m

2
6

k
m

7
k
m

8 km

8

11

22

5

25

 
Fig. 1. GPS reference network (5,8,25,22) and GPS user (11). 

4 . 2 .  E s t i m a t i o n  o f  t h e  i o n o s p h e r i c  d e l a y  

As we mentioned above we aim to test the perfomance of the ionospheric correction 
interpolated from the GPS reference stations to a single frequency GPS user inside the test 
area. To do this, we have developed three steps:  

1. The ionospheric effect was estimated by Eq.(22) at each epoch, at each GPS 
reference station (point 5, 8, 22 and 25) and interpolated to a single frequency GPS 
user placed at the point 11. The behaviour of the ionospheric delay was studied. In 
particular, the values obtained at station 5 with some satellites are plotted in Fig. 2. 
In this case, the mean of the model (23) was computed using the precise Klobuchar 
coefficients from CODE center.  

2. The ionospheric delay at point 11 was obtained by interpolating the ionospheric 
delays estimated at the GPS reference stations. A weighted mean, with weights 
proportional to the inverse of the distance between the GPS user and the reference 
station, was used for interpolation.  

3. The residual ionospheric effect was computed to determine the quality of the 
interpolator. This residual is the difference between “interpolated” and “real” 
ionospheric effect, where “real” corresponds to the delay computed from Eq.(22). 
In Fig. 3 the values of the residuals are presented.  
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a) 

 

b) 

 

c) 

Fig. 2. Ionospheric delay at Station 5. a) Biased ionospheric delay implied by Eq.(18). b) Global 
ionospheric model. c) Total ionospheric delay implied by Eq.(22). 
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Fig. 3. Residual ionospheric effect: the difference between interpolated and “real” ionospheric 
effects, where “real” corresponds to the delay computed from Eq.(22). 

Fig. 2 is composed of three parts: the left column represents the values generated by 
Eq.(18), Fig. 2b shows the ionospheric effect stemming from the precise Klobuchar model 
coefficients, and Fig. 2c represents the total ionospheric delay computed from Eq.(22). It 
can be observed that the Klobuchar model is very smooth and contributes the “order of 
magnitude” to the mean of the ionospheric delay in Eq.(22). In Fig. 2a, the values range 
up to one meter and contribute to generating the “details” of the ionospheric delay given 
by Eq.(22). Regarding residuals (Fig. 3), it can be observed that all residuals are less than 
4 cm. 

4 . 3 .  I n f l u e n c e  o n  b a s e l i n e  p r o c e s s i n g  

In order to further test the perfomance of the ionospheric delay interpolator in terms of 
efficiency for baseline determination, baseline differences with respect to the known 
solution were analysed using four different ways of correcting for the ionosphere. First, 
the ionospheric delay was estimated by the Klobuchar model with broadcast and precise 
coefficients. After that, the ionosphere correction was estimated by Eq.(22) considering 
two different global models: the Klobuchar model with precise coefficients α and β, and 
the ionosphere model implied by IONEX TEC maps. In the latter case the values of TEC 
in our observation time were obtained by interpolating two consecutive rotated maps and 
applying a simple 4-point formula to interpolate the grid points. To do this, the Fortran 
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routines available from ftp://ftp.unibe.ch/unibe/ 
ionex/source were used. GPS measurements were processed with the GPSurvey software 
(Trimble, 1999) in the following way:  

– Observations: P1, L1 free of cycle slips.  
– Ephemerides: precise.  
– Troposphere: Saastamoinen model with standard atmosphere parameters.  
– Ionosphere: Klobuchar model and ionospheric delay estimated by Eq.(22). In the 

latter case the observations were corrected using Eq.(22) and then processed with 
GPSurvey software without the ionospheric model option.  

– Antenna offsets provided by the International GPS Service (IGS).  
– Solution: L1 ambiguities fixed, when possible.  

From our geodynamic GPS network, including many more baselines and sessions, we 
have derived what we consider to be the “true” beseline components. They can be seen in 
Table 1. The results of the baseline processing are shown in Table 2. The first column 
identifies the baseline considered. The second one gives the difference between “true” 
baseline components and the baseline components obtained using only the broadcast 
Klobuchar model to estimate the ionosphere effect. The fourth shows the difference 
between “true” baseline components and the baseline components obtained using only the 
precise Klobuchar coefficients (determined by CODE) to estimate the ionosphere effect. 
The sixth shows the difference between “true” baseline components and the baseline 
components obtained estimating the ionosphere delay using Eq.(22), using the Klobuchar 
model with the precise coefficients as a global model. Column number eight gives the 
difference between “true” baseline components and the baseline components obtained 
estimating the ionosphere delay using Eq.(22), using the ionosphere model implied by 
IONEX TEC maps to compute the mean (23). In the adjacent columns, the type of 
solution obtained by GPSurvey software, i.e floating or fixed, for each particular case, is 
also given.  

From Table 2 we can conclude:  

– The results improve when IGS products are used.  
– In general, the differences between “true” values and estimated values are smaller 

when we model the ionospheric effect using Eq.(22).  
– No substantial differences were found when we modeled the ionosphere with 

Eq.(22) using the precise Klobuchar model and the IGS ionosphere model implied 
by IONEX TEC maps.  

– When we estimated the ionospheric effect using Eq.(22), the L1 fixed solution was 
achieved in three cases. However, using the broadcast Klobuchar model only, we 
obtained a fixed solution for the baseline 22-11, but the differences with “true” 
values were large. This suggests that the ionospheric effect implied by Eq.(22) 
represents the ionosphere better than the Klobuchar model.  

The final test carried out to study the quality of the ionospheric interpolation is to 
adjust the above baselines to estimate the coordinates of point 11. In Table 3 the 
coordinates obtained from this adjustment are shown. Taking into account the above 
results (no substantial differences between columns six and eight in Table 2) the precise 
Klobuchar model was used in Eq.(22). It can be seen again that the adjusted coordinates 
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Table 1. “True” baseline components (session 175). 

Baseline X [m] Y [m] Z [m] 

25-11 2597.452 −5998.385 −7760.937 
22-11 −12158.208 −1347.419 16061.456 
5-11 −768.754 22274.197 3350.074 
8-11 4533.845 2660.82 −5666.414 

Table 2. Baseline Processing. TC = “True” components. KC(1) = Components estimated using only 
the broadcast Klobuchar model. KC(2) = Components estimated using the precise Klobuchar model 
only. EC(1) = Components estimated with the ionospheric delay given by Eq.(22) using the precise 
Klobuchar model to compute the mean (23). EC(2) = Components estimated with the ionospheric 
delay given by Eq.(22) using the IGS model implied by IONEX TEC maps to compute the 
mean (23).  

Baseline TC−KC(1) Solution TC−KC(2) Solution TC−EC(1) Solution TC−EC(2) Solution 

∆X 0.077 0.030 0.042 0.027 
∆Y 0.031 0.008 0.001 0.008 25-11 
∆Z 0.078 

L1 float 
0.032 

L1 fixed
0.018 

L1 fixed
0.017 

L1 fixed 

∆X −0.108 −0.098 0.046 0.045 
∆Y −0.151 −0.067 0.045 0.043 22-11 
∆Z −0.113 

L1 fixed 
−0.136 

L1 float
0.034 

L1 float
0.033 

L1 float 

∆X 0.123 0.127 0.093 0.083 
∆Y 0.114 0.085 −0.043 −0.046 5-11 
∆Z 0.089 

L1 float 
0.100 

L1 float
0.015 

L1 fixed
0.021 

L1 fixed 

∆X 0.102 0.068 0.048 0.063 
∆Y 0.004 0.004 0.007 0.002 8-11 
∆Z 0.071 

L1 fixed 
0.056 

L1 fixed
0.044 

L1 fixed
0.048 

L1 fixed 

are better when IGS products are used. The differences between “true” coordinates and 
estimated coordinates are better than 6 cm and the differences between the two last 
solutions are not statistically significant. This is probably due to the distribution of the 
points in this session.  

4 . 4 .  D a t a s e t  b e l o n g i n g  t o  t h e  L o m b a r d  G P S  p e r m a n e n t  
n e t w o r k  

A project to establish a permanent GPS network in Lombardy (North of Italy) is being 
developed (see Fig. 4). GPS observations from Como (Co), Milano Agraria (Mi), Pavia 
(Pv) and Brescia (Br) permanent stations were used to test the perfomance of our 
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Table 3. Coordinate estimation of point 11. For meaning of TC, KC(1), KC(2) and EC(1), see 
Table 1. 

Solution X [m] St. Dev [m] Y [m] St. Dev [m] Z [m] St. Dev [m] 

TC 5077851.788  −318413.099  3835122.585  
KC(1) 5077851.708 ±0.018 −318413.101 ±0.010 3835122.523 ±0.010 
KC(2) 5077851.742 ±0.015 −318413.106 ±0.006 3835122.544 ±0.008 
EC(1) 5077851.731 ±0.026 −318413.094 ±0.010 3835122.553 ±0.013 

approach in a larger area. The following summarizes the data set and baseline processing 
strategy:  

– Day: 16-01-2003.  
– Two observation sessions: from 10:00:00 to 10:30:00 UTC and from 14:20:00 to 

14:50:00 UTC.  
– Sample rate: 1 second in Como, Pavia, Milano and 5 seconds in Brescia.  
– Cut-off angle: 10°.  
– Dual frequency phase and code receivers. Specifically Trimble 4000ssi with 

antenna choke rings in Como and Brescia, Ashtech Z12 with antenna Geodetic 
IIIA in Milan and TRIMBLE 4700 with antenna choke ring in Pavia.  

– Ephemerides: rapid ephemerides from IGS. The choice of using the rapid 
ephemerides instead of the precise ones was due to the fact that for such short 
bases and short time spans, no substantial differences in the results were found.  

– Troposphere: Saastamoinen model with standard atmosphere parameters.  
– Ionosphere: precise Klobuchar model only and ionospheric delay estimated by 

Eq.(22) using the IGS ionospheric model implied by IONEX TEC map. In the 
latter case, the observations were corrected using Eq.(22) and then the ionospheric 
delays were interpolated to estimate the ionopheric effect in Milan. Finally, 
observations were processed with GPSurvey software without the ionospheric 
model option.  

– Antenna offsets provided by the International GPS Service (IGS).  
– Solution: L1 ambiguities fixed, when possible. 

The ionospheric effect resulting from our approach was interpolated to a fictitious 
single GPS user located at Milan station using a weighted mean, with weights 
proportional to the inverse of the distance between the GPS user and the permanent 
station. Subsequently, the baselines Pv-Mi, Co-Mi and Br-Mi were processed and adjusted 
to estimate the coordinates of the fictitious GPS user inside the area defined by the 
permanent stations. The baseline solutions using the ionosphere effect modeled by the 
precise Klobuchar model and by Eq.(22) are shown in Tables 5 and 6. They were 
compared with the baselines computed from the ETRF89 coordinates of the points (see 
Table 4) considered as “true” values. In Tables 5 and 6 it can be seen that the differences 
with the “true” values are smaller when our approach is used. The improvement is really 
great when we processed the longer baselines. This suggests that our approach gives a 
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Fig. 4. Lombard GPS permanent network (Italy). 

more faithful representation of the ionosphere. Furthermore, the STD (standard deviation) 
of solutions obtained using Eq.(22) is always smaller than that implied by the precise 
Klobuchar model. The adjusted coordinates of the single frequency GPS user are 
computed using the GPS network module of the GPSurvey software. The geographical 
coordinates are shown in Table 7. It can be seen that the STD of the coordinates provided 
by our method are better than 4 cm and is always smaller than the solution implied by the 
precise Klobuchar model. Furthermore the results show that the height estimated by our 
approach is better than that estimated using the precise Klobuchar model only.  

In summary, the ionosphere delay can be interpolated and broadcast over a larger GPS 
network; in our particular case the method worked when the distance between the GPS 
single frequency user and a permanent station was about 70 km. To confirm this result, 
more tests should be carried out. From a conservative point of view, we can say that the 
method works when the distance between the GPS single frequency user and a permanent 
station is under 40 km and accuracies better than 10 cm are required.  

Table 4. ETRF89 baseline slope distance [m]. 

Pv-Mi 31203.660 

Co-Mi 37633.557 

Br-Mi 79188.494 
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Table 5. Baseline slope distance [m] estimated using the precise Klobuchar model. 

Base Base Estimation STD Solution Difference from “True” Value 

Pv-Mi (session 1) 31203.526 0.039 float 0.134 
Pv-Mi (session 2) 31203.691 0.026 float −0.031 
Co-Mi (session 1) 37633.658 0.068 float −0.101 
Co-Mi (session 2) 37633.694 0.022 float −0.137 
Br-Mi (session 1) 79188.668 0.099 float −0.174 
Br-Mi (session 2) 79188.361 0.107 float 0.133 

Table 6. Baseline slope distance [m] estimated with the ionospheric delay, given by Eq.(22), 
using the IGS model implied by IONEX TEC maps to compute the mean (23). 

Base Base Estimation STD Solution Difference from “True” Value 

Pv-Mi (session 1) 31203.560 0.036 float 0.100 
Pv-Mi (session 2) 31203.702 0.023 float −0.042 
Co-Mi (session 1) 37633.652 0.032 float −0.095 
Co-Mi (session 2) 37633.500 0.019 float 0.056 
Br-Mi (session 1) 79188.554 0.033 float −0.060 
Br-Mi (session 2) 79188.570 0.054 float −0.076 

Table 7. Coordinate estimation of GPS user inside the test area. TC = “True” Coordinates. 
KC(2) = Coordinates estimated using the precise Klobuchar model. EC(2) = Coordinates estimated 
with the ionospheric delay, given by Eq.(22), using the IGS model implied by IONEX TEC maps to 
compute the mean (23). 

Solution Latitude STD [m] Longitude STD [m] H [m] STD [m] 

TC 45°28′34.828061″  +9°13′36.911848″  174.100  
KC(2) 45°28′34.828786″ ±0.051 +9°13′36.912958″ ±0.110 174.046 ±0.064 
EC(2) 45°28′34.828522″ ±0.020 +9°13′36.909835″ ±0.039 174.102 ±0.027 

5. CONCLUSIONS 

The problem of estimating the ionospheric effect from dual frequency GPS 
measurements has been studied in this paper. A procedure based on LS theory is 
combined with a global ionosphere model to estimate the ionospheric correction implicitly 
taking the differential code biases into account. The procedure has the advantage that it 
can work with observations from a single GPS station. This is particularly useful for a 
permanent GPS array because it allows the direct ionospheric estimation based on a 
station by station approach without the heavier computational burden resulting from 
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processing all the stations at once. The estimated ionospheric effect has been interpolated 
from GPS reference stations to a single frequency GPS user within two test areas. In the 
first test, a GPS network composed of short baselines was considered. The ionospheric 
effect was estimated, interpolated and compared with the “real” ionospheric effect over a 
short period. The residuals obtained were always less than 4 cm. In the second test, a data 
set from the GPS permanent Lombard network was used. The ionospheric delay estimated 
and interpolated was then used to estimate the coordinates of a single frequency GPS 
point. Our results prove that modeling the ionosphere effect with our procedure gives 
better results than when using only a global model such as the Klobuchar model with 
precise coefficients determined by the CODE analysis center. This means that the 
differences between baseline estimated and “true” values are smaller when our method is 
used. Furthermore, the STD of our solutions are also smaller than those implied by the 
global model. From our results, we can conclude that the ionospheric effect can be 
successfully estimated and interpolated to a GPS single frequency user inside a permanent 
GPS network if the the distance between the GPS user and GPS permanent stations is less 
than 40 km.  

APPENDIX 

If we consider the deterministic part of the model (5), which the LS estimates have to 
satisfy, we can construct the inverse relation between our four unknown parameters and 
the observables at each epoch t.In particular we can write:  
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Then, the problem to be solved reads:  
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in which we have considered 2
0σ = 0.0022 m2, q1 = 105 and q2 = 104. This is equivalent to 

a noise of 60 cm for the P1 code and 20 cm for the P2 code.  
It is important to note that the first equation in (A6) is directly used to estimate the 

smoothed pseudorange and ionospheric delay parameters at each epoch, while the second 
is used to define the manifold of admissible values for the observables.  

To solve the problem (A5) we form the Lagrange function  
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To minimize this function, the derivatives respective to ˆ
ty  and b̂  are set equal to zero 

and then we solve the equation system formed by adding the second condition of (A6):  
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From the first equation:  

 ˆ T
tot ty y λ− = −QR . (A10) 

Substituting in the third one, we obtain:  

 ˆ
t otb y tλ= +R K , (A11) 
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where . Then, the parameter T=K RQR tλ  is: 
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From the second equation:  
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Finally, we obtain the LS ambiguity bias estimate: 
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Substituting now (A15) in (A12), we have:  
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Putting tλ  in (A10), we can write:  
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Substituting (A17) in (A2) we obtain the LS pseudorange and inospheric delay 
solutions at each epoch:  
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From this expression we can see, as promised, how the electronic biases influence the 

estimates ( ) ( )(ˆ ˆˆ
T

t t J tξ ρ= ) . In fact, the term ot oy y−  is clearly bias free so that the 

biases enter only through the first term otyΓ  and due to the particular form of Γ we see 

that the phase biases play no role at all while the (larger) pseudorange biases (Q1 and Q2) 
enter into  as ( )ˆ tρ 1 2
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− . In particular, it is this last term 

which is taken from a global ionospheric model.  
To obtain the covariance matrices of the LS parameters, we apply the law of 

covariance propagation. In this way,  
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