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Abstract. Unbalanced data in a classification problem appears when
there are many more instances of some classes than others. Several
solutions were proposed to solve this problem at data level by under-
sampling. The aim of this work is to propose evolutionary prototype
selection algorithms that tackle the problem of unbalanced data by us-
ing a new fitness function. The results obtained show that a balancing of
data performed by evolutionary under-sampling outperforms previously
proposed under-sampling methods in classification accuracy, obtaining
reduced subsets and getting a good balance on data.

1 Introduction

The class unbalance problem emerged when machine learning started being ap-
plied to the technology, industry and scientific research. A set of examples that
will be used as input of classification algorithms is said to be unbalanced when
one of the classes is represented by a very small number of cases compared to
the other classes. In such cases, standard classifiers tend to be flooded by the
large classes and ignore the small ones.

A number of solutions have been proposed at the data and algorithmic levels
[1]. At the data level, we found forms of re-sampling such as over-sampling,
where replication of examples or generation of new instances is performed [2]; or
under-sampling, where elimination of examples is performed. At the algorithmic
level, an adjust of the operation of the algorithm is carried out to treat with
unbalanced data, see [3] for an example.

Various approaches of under-sampling methods were proposed in the liter-
ature considering two-classes problems, see [4] for review. Most of them are
modifications of Prototype Selection (PS) algorithms [5].

Evolutionary Algorithms (EAs) [6] are stochastic search methods that mimic
the metaphor of natural biological evolution. All EAs rely on the concept of
population of individuals (representing search points in the space of potential
solutions to a given problem), which undergo probabilistic operators such as
mutation, selection and recombination. EAs have been used to solve the PS



problem with promising results [7]. Its application is denoted by Evolutionary
Prototype Selection (EPS).

In this work, we propose the use of EAs for under-sampling unbalanced data
sets ,we call it Evolutionary Under-Sampling (EUS), in order to improve bal-
anced classification accuracy and distribution of classes. The aim of this paper is
to present our proposal model and compare it with others under-sampling meth-
ods studied in the literature. To address this, we have carried out experiments
with unbalanced data sets with distinct degrees of distribution of classes.

The remainder of the paper is divided into four sections. Section 2 summarizes
the main characteristics of EUS. Section 3 briefly describes the previous under-
sampling methods. Section 4 presents the way to evaluate classification systems
in domains with unbalanced data sets. Section 5 discusses the methodology used
in the experiments, as well as the results achieved. Finally, Section 6 concludes
the paper.

2 Evolutionary Under-Sampling

Let’s assume that there is a training set TR which consists of pairs (xi, yi), i =
1, ..., n, where xi defines input vector of attributes and yi defines the correspond-
ing class label. TR contains n instances, which have m input attributes each one
and they should belong to positive or negative class. Let S ⊆ TR be the subset
of selected instances resulted for the execution of an algorithm.

PS problem can be considered as a search problem in which EAs can be
applied. To accomplish this, we take into account two important issues: the
specification of the representation of the solutions and the definition of the fitness
function.

– Representation: Let us assume a data set TR with n instances. The search
space associated is constituted by all the subsets of TR. This is accomplished
by using a binary representation. A chromosome consists of n genes (one for
each instance in TR) with two possible states: 0 and 1. If the gene is 1,
the its associated instance is included in the subset of T represented by the
chromosome. If it is 0, this does not occur.

– Fitness Function: Let S be a subset of instances of T to evaluate and be
coded by a chromosome. Classically, we define a fitness function that com-
bines two values: the classification rate (clas rat) associated with S and the
percentage of reduction (perc red) of instances of S with regards to TR [7].

Fitness(S) = α · clas rat + (1− α) · perc red. (1)

The 1-NN classifier is used for measuring the classification rate, clas rat,
associated with S. It denotes the percentage of correctly classified objects
from T using only S to find the nearest neighbor. For each object y in S, the
nearest neighbor is searched for amongst those in the set S \ {y}. Whereas,
percred is defined as

perc red = 100 · |TR| − |S|
|TR| . (2)



The objective of the EAs is to maximize the fitness function defined, i.e.,
maximize the classification rate and minimize the number of instances ob-
tained. The EAs with this fitness function will be denoted with the extension
PS in the name.

In order to approach the unbalance data problem, EPS algorithms can be
adjusted making use of a new fitness function defined as follows:

FitnessBal(S) = g − |1− n+

n−
| · P, (3)

where g is geometric mean of balanced accuracy defined in Section 4, n+ is
the number of positive instances selected (minority class), n− is the number of
negative instances selected (majority class), and P is a penalization factor.

This fitness function try to find subsets of instances making a trade-off be-
tween the classification balanced accuracy and an equal number of examples
selected of each class. This second objective is obtained through the penaliza-
tion applied to g in fitness value.

In this paper, we have applied this fitness function in two models of EAs. The
first one, heterogeneous recombinations and cataclysmic mutation (CHC), is a
classical model that introduces different features to obtain a tradeoff between
exploration and exploitation [8], and the second one, PBIL [9], is a specific EA
approach designed for binary spaces. We denote them as CHC-US and PBIL-US
respectively.

3 Under-Sampling and Prototype Selection Methods

In this section, we describe the under-sampling methods and PS algorithms used
in this study.

3.1 Under-Sampling Methods for Balance of Class Distribution

In this work, we evaluate six different methods of under-sampling to balance the
class distribution on training data:

Random under-sampling: It is a non-heuristic method that aims to balance class
distribution through the random elimination of majority class examples to get
a balanced instance set.

Tomek Links [10]: It can be defined as follows: given two examples Ei = (xi, yi)
and Ej = (xj , yj) where yi 6= yj and d(Ei, Ej) being the distance between Ei

and Ej . A pair (Ei, Ej) is called Tomek link if there is not an example El, such
that d(Ei, El) < d(Ei, Ej) or d(Ej , El) < d(Ei, Ej). Tomek links can be used as
an under-sampling method eliminating only examples belonging to the majority
class in each Tomek link found.



Condensed Nearest Neighbor Rule (CNN-US) [11]: First, randomly draw one
majority class example and all examples from the minority class and put these
examples in S. Afterwards, use a 1-NN over the examples in S to classify the
examples in TR. Every misclassified example from TR is moved to S.

One-sided Selection (OSS) [12]: It is an under-sampling method resulting from
the application of Tomek links followed by the application of CNN-US.

CNN-US + Tomek Links [4]: It is similar to OSS, but the method CNN-US is
applied before the Tomek links.

Neighborhood Cleaning Rule (NCL) [13]: Uses the Wilsons Edited Nearest Neigh-
bor Rule (ENN) [14] to remove majority class examples. For each example
Ei = (xi, yi) in the training set, its three nearest neighbors are found. If Ei

belongs to the majority class and the classification given by its three nearest
neighbors contradicts the original class of Ei, then Ei is removed. If Ei belongs
to the minority class and its three nearest neighbors misclassify Ei, the the
nearest neighbors that belongs to the majority class are removed.

3.2 Prototype Selection Methods

Two classical models for PS are used in this study: DROP3 [5] and IB3 [15].
Furthermore, same two EAs used as EUS are employed as EPS with classical
objective and we denote them as CHC-PS and PBIL-PS [7].

4 Evaluation on Unbalanced Data Classification

The most correct way of evaluating the performance of classifiers is based on the
analysis of the confusion matrix. In Table 1, a confusion matrix is illustrated for
a problem of two classes, with the values for the positive and negative classes.
From this matrix it is possible to extract a number of widely used metric to
measure the performance of learning systems, such as Error Rate, defined as
Err = FP+FN

TP+FN+FP+TN and Accuracy, defined as Acc = TP+TN
TP+FN+FP+TN =

1− Err.

Table 1. Confusion matrix for a two-class problem

Positive Prediction Negative Prediction

Positive Class True Positive (TP) False Negative (FN)
Negative Class False Positive (FP) True Negative (TN)

Face to the use of error (or accuracy) rate, another type of metric in the
domain of the unbalanced problems is considered more correct. Concretely, from



Table 1 it is possible to obtain four metrics of performance that measure the
classification performance for the positive and negative classes independently:

– False negative rate FNrate = FN
TP+FN is the percentage of positive cases

misclassified.
– False positive rate FPrate = FN

FP+TN is the percentage of negative cases
misclassified.

– True negative rate TNrate = TN
FP+TN is the percentage of negative cases

correctly classified.
– True positive rate TPrate = TP

TP+FN is the percentage of positive cases
correctly classified.

These four performance measures have the advantage of being independent
of the costs for class and prior probabilities. The goal of a classifier is to minimize
the false positive and false negative rates or, in a similar way, to maximize the
true positive and true negative rates.

In [16] it was proposed another metric called Geometric Mean (GM), defined
as g =

√
a+ · a−, where a+ denote accuracy on positive examples (TPrate), and

a− is accuracy on negative examples (TNrate). This measure try to maximize
accuracy in order to balance both classes at the same time. It is an evaluation
measure that joins two objectives.

5 Experiments and Results

Performance of the under-sampling and PS methods, described in Section 2
and 3 respectively, is analyzed using 7 data sets taken from the UCI Machine
Learning Database Repository [17]. These data sets are transformed to obtain
two-class non-balanced problems. The main characteristics of these data sets
are summarized in Table 2. For each data set, it shows the number of examples
(#Examples), number of attributes (#Attributes), name of the class (minority
and majority) together with class distribution.

Table 2. Relevant Information about each data set used in this study

Data Set #Examples #Attributes %Class (min., maj.) %Class (min., maj.)

Ecoli 336 7 (iMU, Remainder) (10.42,89.58)
German 1000 20 (Bad, Good) (30.00,70.00)
Glass 214 9 (Ve-win-float-proc, Remainder) (7.94,92.06)
Haberman 306 3 (Die, Survive) (26.47,73.53)
New-thyroid 215 5 (hypo, Remainder) (16.28,83.72)
Pima 768 8 (1,0) (34.77,66.23)
Vehicle 846 18 (van, Remainder) (23.52,76.48)

The data sets considered are partitioned using the ten fold cross-validation
(10-fcv) procedure. The parameters of algorithms used are presented in Table 3.



Table 3. Parameters considered for the algorithms

Algorithm Parameters

CHC-PS Pop = 50, Eval = 10000, α = 0.5
IB3 Acept.Level = 0.9, DropLevel = 0.7
PBIL-PS LR = 0.1, Mutshift = 0.05, pm = 0.02, Pop = 50

NegativeLR = 0.075, Eval = 10000
CHC-US Pop = 50, Eval = 10000, P = 20
PBIL-US LR = 0.1, Mutshift = 0.05, pm = 0.02, Pop = 50

NegativeLR = 0.075, Eval = 10000, P = 20

Table 4. Class distribution after balancing

Balancing Method % Minority Class (Positive) % Majority Class (Negative)

CHC-PS 34.74 65.26
PBIL-PS 33.94 66.06
DROP3 45.10 54.90
IB3 33.95 66.05

CNN-US + TomekLinks 87.14 12.86
CNN-US 58.25 41.75
NCL 31.52 68.48
OSS 38.76 61.24
RandomUnderSampling 50.00 50.00
TomekLinks 29.29 70.71

CHC-US 50.00 50.00
PBIL-US 49.99 50.01

Table 4 shows class distribution after balancing with each method. Table
5 shows us the average of the results offered by each algorithm. Each column
shows:

– The balancing method employed. None indicates that no balancing method
is employed (original data set is used to classification with 1-NN).

– Percentage of reduction with respect to the original data set size.
– Accuracy percentage for each class by using a 1-NN classifier (a+ and a−),

where subindex tra refers to training data and subindex tst refers to test
data. GM value also is showed to training and test data.

Tables 4 and 5 are divided in three parts by separator lines: PS methods, Under-
Sampling methods and proposed methods.

The following analysis of results can be made for these tables:

– CHC-US and PBIL-US present the best trade-off accuracy between both
classes, they have the higher value of average GM in training and test (Table
5).

– The new fitness function used in EUS allows us to obtain a well-balanced
class distribution (Table 4).

– There are algorithms that discriminates the negative class to a great extent,
such as CNN-US+Tomek Links. PS algorithms discriminate positive class



because they only take into account the global performance of classification,
which is highly conditioned for negative (majority) class examples.

Table 5. Average results

Balancing Method % Red %a−tra %a+
tra GMtra %a−tst %a+

tst GMtst

None (1-NN) - 89.34 57.69 70.46 88.71 56.19 69.38

DROP3 87.75 84.51 67.31 74.90 81.42 56.88 67.08
IB3 71.61 84.96 48.84 62.47 85.35 51.88 65.18
CHC-PS 98.67 94.88 57.07 67.04 93.16 50.11 61.73
PBIL-PS 95.48 95.58 61.19 69.78 91.59 53.81 63.49

CNN-US 61.70 79.08 63.00 69.41 81.26 63.53 70.76
CNN-US + TomekLinks 74.77 54.05 91.66 68.28 54.29 89.16 67.43
NCL 17.70 81.72 82.30 81.38 80.17 73.47 75.96
OSS 75.39 81.23 69.01 74.23 81.72 67.33 73.43
RandomUnderSampling 57.32 75.25 76.85 75.99 74.70 75.88 75.21
TomekLinks 11.88 85.64 76.50 80.15 83.77 68.58 75.19

CHC-US 95.45 82.46 88.78 85.54 79.17 75.91 77.48
PBIL-US 77.66 86.98 90.82 88.87 81.08 74.32 77.56

We have included a second type of table accomplishing a statistical compari-
son of methods over multiple data sets. Demšar [18] recommends a set of simple,
safe and robust non-parametric tests for statistical comparisons of classifiers.
One of them is Wilcoxon Signed-Ranks Test [19][20]. Table 7 collects results of
applying Wilcoxon test between our proposed methods and the rest of Under-
Sampling algorithm studied in this paper over the 7 data sets considered. This
table is divided in two parts: In the first part, the measure of performance used
is the accuracy classification in test set through geometric mean. In the sec-
ond part, we accomplish Wilcoxon test by using as performance measure only
the reduction of the training set. Each part of this table contains two rows,
representing our proposed methods, and N columns where N is the number of
algorithms considered in this study. Algorithms order is given at Table 6. In each
one of the cells can appear three symbols: +, = or −. They represent that the
algorithm situated in that row outperforms (+), is similar (=) or is worse (−)
in performance than the algorithm which appear in the column (Table 7).

Table 6. Algorithms order

Algorithm Number Algorithm Number

DROP3 1 NCL 7
IB3 2 OSS 8
CHC-PS 3 RandomUnderSampling 9
PBIL-PS 4 Tomek Links 10
CNN-US 5 CHC-US 11
CNN-US+Tomek Links 6 PBIL-US 12



Table 7. Wilcoxon test

GMtstAccuracy Performance

1 2 3 4 5 6 7 8 9 10 11 12
CHC-US (11) + + + + = + = = = = =
PBIL-US (12) + + = = = + = = = = =

Reduction Performance

1 2 3 4 5 6 7 8 9 10 11 12
CHC-US (11) + + - = + + + + + + +
PBIL-US (12) - = - - + = + = + + -

We make a brief analysis of results summarized in Table 7:

– Wilcoxon test shows us that our proposed algorithms are statistically equal
to other Under-Sampling methods and outperforms PS methods, in terms of
accuracy in test.

– However, in reduction performance, EUS obtain better reduction than non-
evolutionary under-sampling methods. It points out that EUS provides re-
duced subsets without loss of balanced accuracy classification performance
with respect to the rest of algorithms.

– Note that Wilcoxon test is performed using a low number of data sets (the
minimum possible number of them to carry out the test). This implies that
the results obtained may need more depth study (see for example the dif-
ference between CHC-PS and PBIL-US in GM test with similar statistical
behavior). It is necessary to use more data sets in a future study.

6 Conclusions

The purpose of this paper is to present a proposal of Evolutionary Prototype
Selection Algorithm with balance of data through under-sampling for imbalanced
data sets. The results shows that our proposal is better analyzing the mean, equal
statistically and better in reduction versus the remainder of under-sampling
methods. Furthermore, a good balance of distribution of classes is achieved.

The paper also points out that standard Prototype Selection must not be
employed to manage non-balanced problems.
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