A CALABI-TYPE CORRESPONDENCE FOR THE PRESCRIBED MEAN CURVATURE EQUATION

José M. Manzano

Dipartimento di Scienze Matematiche – Politecnico di Torino manzanoprego@gmail.com

ABSTRACT

We classify all Killing submersions from a Riemannian or Lorentzian orientable 3-manifold \mathbb{E} to a simply-connected surface M in terms of a natural function $\tau \in \mathcal{C}^{\infty}(M)$, called bundle curvature. We present explicit models for such structures, enabling a generalization of the classical Calabi correspondence. Namely, it is a bijection between mean curvature H graphs in Riemannian Killing submersions with bundle curvature τ , and mean curvature τ spacelike graphs in Lorentzian Killing submersions with bundle curvature H (here H and τ are arbitrary smooth functions defined over a common base surface M). This leads to the existence of solutions for the prescribed mean curvature equation and to the non-existence of complete spacelike surfaces in a large class of spacetimes.

APPLICATIONS

1. Prescribed mean curvature equations. Let us consider the following problems:

• Given $H \in \mathcal{C}^{\infty}(\mathbb{R}^2)$, is there $u \in \mathcal{C}^{\infty}(\mathbb{R}^2)$ such that the graph $(x, y) \mapsto (x, y, u(x, y))$ has mean curvature H(x, y) in \mathbb{R}^3 ?

Several obstructions appear, as the fact that H cannot be bigger than R in a ball of radius $\frac{1}{R}$ for any R > 0 (Heinz condition).

KILLING SUBMERSIONS [2]

A Killing submersion is a Riemannian submersion $\pi : \mathbb{E} \to M$, where \mathbb{E} is an orientable 3manifold, M is an orientable Riemannian surface, and the fibers of π are the integral curves of a *unit* Killing vector field $\xi \in \mathfrak{X}(\mathbb{E})$.

• There exists a function $\tau \in \mathcal{C}^{\infty}(\mathbb{E})$, called *bun*dle curvature, such that

 $\nabla_X \xi = \tau X \wedge \xi$, for all $X \in \mathfrak{X}(\mathbb{E})$ It is constant along fibers $\rightsquigarrow \tau \in \mathcal{C}^{\infty}(M)$.

- All fibers share the same length.
- If M is not compact or the fibers have infinite length, then π admits a global section.

The submersion π is Riemannian if ξ is spacelike, otherwise it is called Lorentzian.

CLASSIFICATION OVER A DISK

Theorem. Let M be a disk $\Omega \subset \mathbb{R}^2$ endowed with the metric $\lambda^2(dx^2 + dy^2), \lambda > 0$. Given

VERTICAL GRAPHS

A vertical graph in a Killing submersion $\pi : \mathbb{E} \to$ M is a smooth section of π . Assuming (locally) the model given by (\star) , a regular vertical graph Σ_u is the image of

 $(x, y) \mapsto (x, y, u(x, y)),$

for some open subset $D \subset M$ and $u \in \mathcal{C}^{\infty}(D)$. We will introduce the following notation:

Riemannian case	Lorentzian case
$\alpha = u_x + y \mathbf{C}_{\lambda,\tau}$	$\widetilde{\alpha} = u_x - y \mathbf{C}_{\lambda,\tau}$
$\beta = u_y - x \mathbf{C}_{\lambda,\tau}$	$\widetilde{\beta} = u_y + x \mathbf{C}_{\lambda,\tau}$
$\omega = \sqrt{1 + \frac{\alpha^2 + \beta^2}{\lambda^2}}$ $Gu = \frac{\alpha \partial_x + \beta \partial_y}{\lambda^2}$	$ \widetilde{\omega} = \sqrt{1 - \frac{\alpha^2 + \beta^2}{\lambda^2}} \\ Gu = \frac{\alpha \partial_x + \beta \partial_y}{\lambda^2} $

The vector field $Gu \in \mathfrak{X}(D)$ plays the role of a generalized gradient. The mean curvature of Σ_u admits the following divergence-type expression:

$$H = \frac{1}{2} \operatorname{div}_M \left(\frac{Gu}{\sqrt{1 \pm \|Gu\|_M^2}} \right).$$

By twin correspondence it is equivalent to the Bernstein problem in $\mathbb{L}(\mathbb{R}^2, H)$, i.e., the existence of entire maximal graphs in $\mathbb{L}(\mathbb{R}^2, H)$.

• Lorentzian counterpart: Given $H \in \mathcal{C}^{\infty}(\mathbb{R}^2)$, is there $u \in \mathcal{C}^{\infty}(\mathbb{R}^2)$ such that the graph $(x,y) \mapsto (x,y,u(x,y))$ is spacelike and has mean curvature H(x, y) in \mathbb{L}^3 ?

Similarly, there is a twin relation with entire minimal graphs in $\mathbb{E}(\mathbb{R}^2, H)$, but in this case we do not have a Heinz condition.

If H is a radial function, the equation z = 0defines an entire minimal graph in $\mathbb{E}(\mathbb{R}^2, H)$, which gives an easy way of proving that there exist arbitrary prescribed radial mean curvature surfaces in \mathbb{L}^3 .

2. Complete spacelike surfaces. Let Mbe non-compact simply-connected. The Cheeger constant of M is defined as

$$\operatorname{Ch}(M) = \inf \left\{ \frac{\operatorname{Length}(\partial D)}{\operatorname{Area}(D)} : D \subset M \text{ regular} \right\}$$

 $\tau \in \mathcal{C}^{\infty}(M)$, any Killing submersion over M with bundle curvature τ , and whose fibers have infinite length, is isomorphic to

 $\pi_1: \Omega \times \mathbb{R} \to \Omega, \quad \pi_1(x, y, z) = (x, y),$ where $\Omega \times \mathbb{R}$ is endowed with the metric

 $\lambda^{2}(\mathrm{d}x^{2} + \mathrm{d}y^{2}) \pm (\mathrm{d}z \pm \mathbf{C}_{\lambda,\tau}(y\,\mathrm{d}x - x\,\mathrm{d}y))^{2} (\star)$ $\mathbf{C}_{\lambda,\tau} = 2 \int_{0}^{1} s\tau(xs, ys)\lambda(xs, ys)^{2}\,\mathrm{d}s.$

The \pm sign is chosen positive in the Riemannian case, and negative in the Lorentzian case.

- If $M = \mathbb{M}^2(\kappa)$, the simply-connected surface with constant curvature κ , and τ is constant, we get the BCV-spaces $\mathbb{E}(\kappa, \tau)$ and $\mathbb{L}(\kappa, \tau)$.
- If $\tau = 0$ we get the product manifolds $M \times \mathbb{R}$ and $M \times \mathbb{R}_1$.

FURTHER CLASSIFICATION

Let M be a Riemannian surface and $\tau \in \mathcal{C}^{\infty}(M)$. Then there exists a Killing submersion $\pi : \mathbb{E} \to$

TWIN CORRESPONDENCE [1]

- **Theorem.** Let M be a Riemannian surface, $H, \tau \in \mathcal{C}^{\infty}(M)$, and $D \subset M$ open and simplyconnected. There is a correspondence between:
- Graphs with prescribed mean curvature H in $\mathbb{E}(M,\tau)$ over D.
- 2. Spacelike graphs with prescribed mean curvature τ in $\mathbb{L}(M, H)$ over D.

Some remarks about this correspondence:

- The map $(x, y, u(x, y)) \mapsto (x, y, v(x, y))$ is conformal between two twin surfaces Σ_u and Σ_v , so the conformal structure is preserved.
- It is unique up to an additive constant (i.e., up to a translation in the direction of ξ).
- Using the notation above in the model (\star) , it can be computed (locally) explicitly via the twin relations:

A classical application of the divergence theorem yields that, given $H \in \mathcal{C}^{\infty}(M)$ such that $\inf_M |H| > \frac{1}{2} Ch(M)$, the space $\mathbb{E}(M, \tau)$ does not admit entire graphs with mean curvature H.

Since this argument is independent of τ , we can produce a twin result independent of H in the Lorentzian setting:

Theorem. Given $\tau \in \mathcal{C}^{\infty}(M)$ such that $\inf_M |\tau| > \frac{1}{2} Ch(M)$, the spacetime $\mathbb{L}(M, \tau)$ does not admit complete spacelike surfaces.

In $\mathbb{L}(M,\tau)$, complete spacelike surfaces are always entire vertical graphs, which gives the key ingredient for this generalization.

It is well-known that $Ch(\mathbb{R}^2) = 0$, so we get that any Lorentzian Killing submersion over \mathbb{R}^2 with bundle curvature bounded away from zero does not admit complete spacelike surfaces. This is the case of $\operatorname{Nil}_3^1(\frac{1}{2}) = \mathbb{L}(\mathbb{R}^2, \frac{1}{2}).$

Lorentzian manifolds not admitting complete spacelike surfaces are not *distinguishable*, in the sense of causality. Nevertheless, many of these spaces are not even causal, since they contain closed timelike curves.

M with bundle curvature τ . It is unique provided that \mathbb{E} is simply-connected.

Such a manifold \mathbb{E} will be denoted by $\mathbb{E}(M, \tau)$ in the Riemannian case, whereas in the Lorentzian case it will be denoted by $\mathbb{L}(M, \tau)$.

- If M is not compact, then π admits a global section \rightsquigarrow quotient of an example in disk-case.
- If M is compact, then there exists a global section $\Leftrightarrow \int_M \tau = 0.$

The trivial submersion $\mathbb{S}^2 \times \mathbb{R} \to \mathbb{S}^2$ and the Hopf fibration $\mathbb{S}^3 \to \mathbb{S}^2$ illustrate this last property. Different compact 3-manifolds appear depending on the genus of M.

 $\widetilde{\alpha} = \frac{-\beta}{\alpha}, \qquad \widetilde{\beta} = \frac{\alpha}{\alpha}, \qquad \widetilde{\omega} = \frac{1}{\omega}.$

The proof relies on a clever use of Poincaré's Lemma and the fact that both H and τ admit divergence-type expressions. Moreover, it represents a natural and significant generalization of the following previous cases:

- Minimal surfaces in \mathbb{R}^3 and maximal surfaces in \mathbb{L}^3 (Calabi, 1970).
- Minimal surfaces in $M \times \mathbb{R}$ and maximal surfaces in $M \times \mathbb{R}_1$ (Albujer-Alías, 2009). – CMC H surfaces in $\mathbb{E}(\kappa, \tau)$ and CMC τ surfaces in $\mathbb{L}(\kappa, H)$ (Lee, 2011).

REFERENCES

- H. Lee, J.M. Manzano. Generalized Calabi's correspondence and complete spacelike surfaces. Preprint, 2013 [arXiv:1301.7241].
- J.M. Manzano. On the classification of Killing sub-[2]mersions and their isometries. Pac. J. Math., 270 (2014), no. 2, 367–392.

Research partially supported by the Italian PRIN research project 2013-2015, and the Spanish MCyT-Feder research project MTM2011-22547.