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Abstract
We classify all Killing submersions from a Riemannian or Lorentzian orientable 3-manifold E to a
simply-connected surface M in terms of a natural function τ ∈ C∞(M), called bundle curvature.
We present explicit models for such structures, enabling a generalization of the classical Calabi
correspondence. Namely, it is a bijection between mean curvature H graphs in Riemannian Killing
submersions with bundle curvature τ , and mean curvature τ spacelike graphs in Lorentzian Killing
submersions with bundle curvature H (here H and τ are arbitrary smooth functions defined over a
common base surface M). This leads to the existence of solutions for the prescribed mean curvature
equation and to the non-existence of complete spacelike surfaces in a large class of spacetimes.

Killing submersions [2]

A Killing submersion is a Riemannian submer-
sion π : E → M , where E is an orientable 3-
manifold, M is an orientable Riemannian sur-
face, and the fibers of π are the integral curves
of a unit Killing vector field ξ ∈ X(E).

• There exists a function τ ∈ C∞(E), called bun-
dle curvature, such that

∇Xξ = τX ∧ ξ, for all X ∈ X(E)

It is constant along fibers  τ ∈ C∞(M).

• All fibers share the same length.

• If M is not compact or the fibers have infinite
length, then π admits a global section.

The submersion π is Riemannian if ξ is spacelike,
otherwise it is called Lorentzian.

Classification over a disk

Theorem. Let M be a disk Ω ⊂ R2 endowed
with the metric λ2( dx2 + dy2), λ > 0. Given
τ ∈ C∞(M), any Killing submersion over M with
bundle curvature τ , and whose fibers have infi-
nite length, is isomorphic to

π1 : Ω× R→ Ω, π1(x, y, z) = (x, y),

where Ω× R is endowed with the metric

λ2( dx2 + dy2)± ( dz±Cλ,τ (y dx− xdy))2 (?)

Cλ,τ = 2

∫ 1

0

sτ(xs, ys)λ(xs, ys)2 ds.

The ± sign is chosen positive in the Riemannian
case, and negative in the Lorentzian case.

• If M = M2(κ), the simply-connected surface
with constant curvature κ, and τ is constant,
we get the BCV-spaces E(κ, τ) and L(κ, τ).

• If τ = 0 we get the product manifolds M × R
and M × R1.

Further classification
Let M be a Riemannian surface and τ ∈ C∞(M).
Then there exists a Killing submersion π : E →
M with bundle curvature τ . It is unique pro-
vided that E is simply-connected.
Such a manifold E will be denoted by E(M, τ) in
the Riemannian case, whereas in the Lorentzian
case it will be denoted by L(M, τ).

• If M is not compact, then π admits a global
section quotient of an example in disk-case.

• If M is compact, then there exists a global
section ⇔

∫
M
τ = 0.

The trivial submersion S2×R→ S2 and the Hopf
fibration S3 → S2 illustrate this last property.
Different compact 3-manifolds appear depending
on the genus of M .

Vertical graphs
A vertical graph in a Killing submersion π : E→
M is a smooth section of π. Assuming (locally)
the model given by (?), a regular vertical graph
Σu is the image of

(x, y) 7→ (x, y, u(x, y)),

for some open subset D ⊂ M and u ∈ C∞(D).
We will introduce the following notation:

Riemannian case Lorentzian case
α = ux + yCλ,τ α̃ = ux − yCλ,τ

β = uy − xCλ,τ β̃ = uy + xCλ,τ

ω =
√

1 + α2+β2

λ2 ω̃ =
√

1− α2+β2

λ2

Gu =
α∂x+β ∂y

λ2 Gu =
α∂x+β ∂y

λ2

The vector field Gu ∈ X(D) plays the role of a
generalized gradient. The mean curvature of Σu
admits the following divergence-type expression:

H =
1

2
divM

(
Gu√

1± ‖Gu‖2M

)
.

Twin correspondence [1]

Theorem. Let M be a Riemannian surface,
H, τ ∈ C∞(M), and D ⊂ M open and simply-
connected. There is a correspondence between:

1. Graphs with prescribed mean curvature H in
E(M, τ) over D.

2. Spacelike graphs with prescribed mean curva-
ture τ in L(M,H) over D.

Some remarks about this correspondence:

• The map (x, y, u(x, y)) 7→ (x, y, v(x, y)) is con-
formal between two twin surfaces Σu and Σv,
so the conformal structure is preserved.

• It is unique up to an additive constant (i.e.,
up to a translation in the direction of ξ).

• Using the notation above in the model (?), it
can be computed (locally) explicitly via the
twin relations:

α̃ =
−β
ω
, β̃ =

α

ω
, ω̃ =

1

ω
.

The proof relies on a clever use of Poincaré’s
Lemma and the fact that both H and τ admit
divergence-type expressions. Moreover, it repre-
sents a natural and significant generalization of
the following previous cases:

– Minimal surfaces in R3 and maximal surfaces
in L3 (Calabi, 1970).

– Minimal surfaces in M × R and maximal sur-
faces in M × R1 (Albujer-Aĺıas, 2009).

– CMC H surfaces in E(κ, τ) and CMC τ sur-
faces in L(κ,H) (Lee, 2011).

Applications
1. Prescribed mean curvature equations.
Let us consider the following problems:

• Given H ∈ C∞(R2), is there u ∈ C∞(R2)
such that the graph (x, y) 7→ (x, y, u(x, y)) has
mean curvature H(x, y) in R3?

Several obstructions appear, as the fact that
H cannot be bigger than R in a ball of radius
1
R for any R > 0 (Heinz condition).

By twin correspondence it is equivalent to the
Bernstein problem in L(R2, H), i.e., the exis-
tence of entire maximal graphs in L(R2, H).

• Lorentzian counterpart: Given H ∈ C∞(R2),
is there u ∈ C∞(R2) such that the graph
(x, y) 7→ (x, y, u(x, y)) is spacelike and has
mean curvature H(x, y) in L3?

Similarly, there is a twin relation with entire
minimal graphs in E(R2, H), but in this case
we do not have a Heinz condition.

If H is a radial function, the equation z = 0
defines an entire minimal graph in E(R2, H),
which gives an easy way of proving that there
exist arbitrary prescribed radial mean curva-
ture surfaces in L3.

2. Complete spacelike surfaces. Let M
be non-compact simply-connected. The Cheeger
constant of M is defined as

Ch(M) = inf

{
Length(∂D)

Area(D)
: D ⊂M regular

}
.

A classical application of the divergence theo-
rem yields that, given H ∈ C∞(M) such that
infM |H| > 1

2Ch(M), the space E(M, τ) does not
admit entire graphs with mean curvature H.

Since this argument is independent of τ , we can
produce a twin result independent of H in the
Lorentzian setting:

Theorem. Given τ ∈ C∞(M) such that
infM |τ | > 1

2Ch(M), the spacetime L(M, τ) does
not admit complete spacelike surfaces.

In L(M, τ), complete spacelike surfaces are al-
ways entire vertical graphs, which gives the key
ingredient for this generalization.

It is well-known that Ch(R2) = 0, so we get that
any Lorentzian Killing submersion over R2 with
bundle curvature bounded away from zero does
not admit complete spacelike surfaces. This is
the case of Nil13( 1

2 ) = L(R2, 12 ).

Lorentzian manifolds not admitting complete
spacelike surfaces are not distinguishable, in the
sense of causality. Nevertheless, many of these
spaces are not even causal, since they contain
closed timelike curves.
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