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Abstract
We obtain area growth estimates for constant mean curvature graphs in E(κ, τ)-spaces with κ ≤ 0 by finding sharp upper bounds
for the volume of metric balls in E(κ, τ). We focus on complete graphs and graphs with zero boundary values. For instance, we
prove that entire graphs in E(κ, τ) with critical mean curvature have at most cubic intrinsic area growth. We also obtain sharp
upper bounds for the extrinsic area growth of graphs with zero boundary values, and study distinguished examples in detail such
as invariant surfaces, k-noids and ideal Scherk graphs. Finally we give a relation between height and area growth of minimal
graphs in the Heisenberg space (κ = 0), and prove a Collin-Krust type estimate for such minimal graphs.

Estimating the area of surfaces

The space E(κ, τ) is characterized by admitting a Killing submersion π structure over M2(κ) with constant bundle curvature τ .
There are three natural ways of estimating the area of a properly immersed surface Σ ⊂ E(κ, τ):

IAG (Intrinsic area growth)

– Growth of R 7→ Area(BΣ
R(p0))

– BΣ
R(p0) = intrinsic ball of radius R

centered at p0 ∈ Σ.

EAG (Extrinsic area growth)

– Growth of R 7→ Area(Σ ∩BR(p0))

– BR(p0) = extrinsic ball of radius R
centered at p0 ∈ E(κ, τ).

CAG (Cylindrical area growth)

– Growth of R 7→ Area(Σ ∩ CR(p0))

– CR(p0) = π−1(DR(p0)), where DR(p0)
is a disk centered at p0 ∈M2(κ).

Immediate properties

• These definitions depend neither on the choice p0 nor on
modifying Σ in a compact set.

• Since BΣ
R(p0) ⊂ Σ ∩ BR(p0) ⊂ Σ ∩ CR(p0) holds, we easily

get IAG ≤ EAG ≤ CAG.

Classical results (Σ complete, ∂Σ = ∅)
• (Hartman, 64) K− ∈ L1(Σ) =⇒ IAG≤ quadratic

• (Cheng-Yau, 75) IAG≤ quadratic =⇒ parabolicity

• (Li, 97) IAG≤ quadratic and K ≤ 0 =⇒ K ∈ L1(Σ)

Some well-known minimal examples in R3 (images by Mathias Weber)

catenoid

IAG = quadratic
EAG = quadratic

helicoid

IAG = quadratic
EAG = cubic

enneper

IAG = quadratic
EAG = cubic

s.p. scherk

IAG = quadratic
EAG = quadratic

d.p. scherk

IAG = quadratic
EAG = cubic

triply periodic

IAG = cubic
EAG = cubic

Metric balls in E(κ, τ)

geodesics in E(κ, τ)

Geodesic Projection
vertical point

horizontal κg = 0
helicoidal κg = const.

profile of metric balls

h(R) ∼


R2 κ = 0, τ 6= 0

R κ = τ = 0

R κ 6= 0

• If a surface Σ ⊂ E(κ, τ) has an embedded metric neigh-
borhood of uniform radius, then the EAG is at most as
R 7→ Area(BR(p)).

– In Nil3(τ), Area(BR(p)) grows as R4.

– If κ < 0, Area(BR(p)) grows exponentially.

• No lower bound or sharp monotonicity formula is hitherto
known except for minimal surfaces in R3.

Cylindrical area growth

The vertical graph of a function u defined in Ω ⊂ M2(κ) is
the surface Σu parameterized by Fu(x, y) = (x, y, u(x, y)). Its
mean curvature H admits a divergence equation

H =
1

2
div

(
∇u+ Z√

1 + ‖∇u+ Z‖2

)
,

where div, ∇ and ‖ · ‖ are computed in M . Here Z is a vector
field in M not depending upon u.

If DR(0) ⊂ Ω, divergence theorem yields

Area(Σ0) =

∫
Σu∩CR(0)

〈N,N0〉 ≤ Area(Σu ∩ CR(0)).

Hence CAG(Σu)≥CAG(Σ0), with equality ⇔ u ≡ 0.

Extrinsic area growth
Let Σu ⊂ E(κ, τ) be a minimal graph over a domain Ω. Assume
that ∂Ω is piecewise smooth and consists of

1. regular arcs where u has continuous limit values, and

2. regular arcs where u has ±∞ limit values.

Let Ω(R) = Ω ∩ DR(0) and let `(R) be the length of {p ∈
∂Ω(R) : u(p) 6= 0}. Then we can bound the EAG in terms of
the geometry of the base and the height of metric balls:

Area(Σu ∩BR(0)) ≤
∫

Ω(R)

(1 + |Z|) + h(R)`(R).

If one of the following conditions holds:

• u extends continuously to ∂Ω as cero,

• R 7→ `(R) grows as R 7→ Length(DR(0));

then we obtain the following bound for EAG:

– EAG(Σu)≤ quadratic in R3,

– EAG(Σu)≤ cubic in Nil3(τ),

– EAG(Σu)≤ ReR
√
−κ if κ < 0.

Height estimates in Nil3
Let Σu ⊂ Nil3(τ) be an entire minimal graph. Then

(a) IAG(Σ)≤EAG(Σ) ≤ cubic.

(b) CAG(Σ)≥ cubic.

Is it possible to find a condition such that EAG = CAG?

If |u| ≤ M(1 + x2 + y2)β for some M > 0 and β ≥ 1,
then Σu has at most EAG of order 3

β .

By using Lee’s twin correspondence and some gradient inequal-
ities that follow from Cheng-Yau and Treibergs, we can prove
that Σu satisfies the above property for β = 3

2 , i.e., any entire
minimal graph in Nil3 has at most cubic height growth.

In the other direction we can prove at least linear height
growth à la Collin-Krust: If Σ ⊂ Nil3(τ) is a minimal graph
over an unbounded domain Ω with zero boundary values and
M(R) = sup{|u(p)| : p ∈ Ω(R)}, then

lim inf
R→∞

M(R)

R
> 0.

E(κ, τ)-spaces

The space E(κ, τ) is a homogeneous 3-manifold that admits
a Riemannian submersion over M2(κ) such that the fibers
are the integral curves of a unit Killing vector field.

κ < 0 κ = 0 κ > 0

τ = 0 H2 × R R3 S2 × R
τ 6= 0 S̃L2(R) Nil3 Berger S3

If κ ≤ 0 and Ωκ = {(x, y ∈ R2 : 1 + κ
4 (x2 + y2) > 0), we will

consider the model E(κ, τ) = Ωκ × R with the metric

dx2 + dy2(
1 + κ

4 (x2 + y2)
)2 +

(
dz2 +

τ(ydx− xdy)

1 + κ
4 (x2 + y2)

)2

.

Then ∂z is Killing and (x, y, z) 7→ (x, y) is the aforesaid sub-
mersion over M2(κ).

Entire cmc graphs
Entire cmc graphs in E(κ, τ) with critical mean curvature
(4H2 + κ = 0, κ ≤ 0) were classified in [1] in terms of holo-
morphic quadratic differentials defined on C or D, and also
by means of Daniel’s correspondence. We can bound the area
growth of an entire minimal graph Σu ⊂ Nil3(τ) in terms of u:

• Gradient estimate: |∇u+ Z| ≤M(1 + x2 + y2)

• Height estimate: |u| ≤M(1 + x2 + y2)3/2

• Extrinsic area estimate: quadratic≤EAG(Σu)≤ cubic

• Cylindrical area estimate: cubic≤CAG(Σu)≤ quartic

|u| ≤M(1 +x2 + y2) =⇒ EAG(Σu) = CAG(Σu) = cubic.

Ideal Scherk surfaces
These are complete graphs taking alter-
native values ±∞ along the 2n edges of an
ideal polygon in H2(κ), with subcritical
cmc (4H2+κ < 0). They were constructed
by Collin-Rosenberg (H2 × R) and Folha-

Melo (S̃L2(R), H = 0), under certain sharp
conditions.

• The area of the polygon is 2(n−1)π
−κ−4H2 .

• These surfaces are preserved by Daniel’s correspondence.

Ideal Scherk graphs have IAG≤ quadratic.

Symmetric cmc k-noids

These are complete bigraphs with k ends
over some domain of H2(κ), with subcrit-
ical cmc (4H2 + κ < 0). They were con-
structed by Daniel-Hauswirth, Morabito-
Rodŕıguez and Pyo (H2 × R, H = 0), and
Plehnert (H2×R, 0 < H < 1

2 , symmetric).

• In the symmetric case, the surface can be decomposed in 4k
congruent graphs with boundary.

• Each piece corresponds to a minimal graph in S̃L2(R) by
Daniel’s correspondence, where our results apply.

Symmetric k-noids have IAG≤ quadratic.

Open questions

• All known entire minimal graphs in Nil3(τ) have at most
quadratic height growth. We conjecture that this holds true
for all entire minimal graphs. Were it the case, all entire min-
imal graphs in Nil3(τ) would have EAG = CAG = cubic.

• No sharp monotonicity formula is known for a minimal sur-
face Σ ⊂ Nil3(τ). For any known example, the inequality
Area(Σ ∩BR(p)) ≥ CR3 holds for some constant C.

• It was conjectured by Pérez, Rodŕıguez and the author that
any complete stable cmc surface with quadratic IAG
must be a vertical plane. Here we also conjecture that, apart
from vertical planes, any complete stable cmc surface (in
particular, an entire minimal graph) has cubic IAG.
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