INVESTIGACIÓN

 

 

CUÁL ES MI TRABAJO DE INVESTIGACIÓN:

 
  • Las propiedades químicas (reactividad) de cualquier sustancia dependen en gran medida de su estructura molecular (disposición tridimensional de los átomos que la componen), la cual a su vez se ve influenciada por el tipo de enlace entre sus átomos (iónico, covalente o metálico) y de posibles interacciones intramoleculares (interacciones de van der Waals y enlaces de hidrógeno, entre otros) que pueda presentar. Esta reactividad se ve influenciada también por el estado de agregación en qué se encuentre (sólido, líquido, gas o en disolución).

  • Actualmente mi trabajo de investigación se centra principalmente en el estudio de la influencia del medio sobre la estructura molecular y las propiedades químicas de biomoléculas sencillas y sus complejos con metales de transición. 

     
     

EN QUÉ TÉCNICAS EXPERIMENTALES ME BASO PRINCIPALMENTE PARA LLEVARLO A CABO:

 
  • Espectroscopía infrarroja por transformada de Fourier (FT-IR), técnica especialmente útil en el estudio de estructuras moleculares y en la detección de interacciones intermoleculares.

  • Espectroscopía Raman por transformada de Fourier (FT-Raman), técnica complementaria de la espectroscopía infrarroja. Especialmente útil para el estudio de disoluciones acuosas.

  • Espectroscopía de Dicroísmo Circular Vibracional (VCD). Técnica en la cual el grupo de investigación al que pertenezco es pionero es España. Se aplica a moléculas y sistemas moleculares quirales, como lo son la mayoría de las biomoléculas.

     
     

CUÁLES SON LAS TÉCNICAS TEÓRICAS DE MODELIZACIÓN MOLECULAR QUE UTILIZO:

 
  • Métodos basados en la resolución de la ecuación de Schrödinger.

  • Métodos basados en la Teoría del Funcional de la Densidad (DFT).

  • Teoría Cuántica de los Átomos en las Moléculas (QTAIM).

  • Análisis NBO.

  • Análisis vibracional clásico.

 

PUBLICACIONES EN REVISTAS DE INVESTIGACIÓN:

 
 
  1. Hydrogen bonding network in a chiral alcohol: (1R,2S,5R)-(-)-menthol. Conformational preference studied by IR-Raman-VCD spectroscopies and quantum chemical calculations; Structural Chemistry (2012) DOI:10.1007/s11224-012-0118-8.

  2. Study of the photoinduced supramolecular chirality in columnar liquid crystals by infrared and VCD spectroscopies; The Journal of Physical Chemistry B 116 (2012) 5090-5096.

  3. Conformational preference of short aromatic amino acids from the FT-IR, FT-Raman and Far-IR spectroscopies, and quantum chemical calculations: l-phenylalanine and l-tyrosine; Tetrahedron:Asymmetry 23 (2012) 1084-1092.

  4. Conformational landscape and hydrogen bonding in (S)-(-)-perillyc acid: experimental VCD, IR, Raman, and theoretical DFT studies; Tetrahedron: Asymmetry 23 (2012) 780-788.

  5. Characterization of H-bonding networks in chiral alcohols using infrared, Raman and Vibrational Circular Dichroism spectroscopies, and Density Functional calculations: (S)-(-)-perillyl alcohol; Tetrahedron:Asymmetry 23 (2012) 515-525.

  6. Conformational landscape of a chiral crown ether: a vibrational circular dichroism spectroscopy and computational study; Tetrahedron: Asymmetry 23 (2012) 294-299.

  7. The chiral structure of 1H-indazoles in the solid state: a crystallographic, vibrational circular dichroism and computational study; New Journal of Chemistry  36 (2012) 749-758.

  8. Terpenes in the gas phase: the far-IR spectrum of perillaldehyde; Journal of Quantitative Spectroscopy and Radiative Transfer 113 (2012) 1261-1265.

  9. IR-Raman-VCD study of R-(+)-Pulegone: Influence of the solvent; Spectrochimica Acta - Part A Molecular and Biomolecular Spectroscopy 79 (2011) 767-778.

  10. Chiral terpenes in different phases: R-(-)-camphorquinone studied by IR-Raman-VCD spectroscopies and theoretical calculations; Structural Chemistry  22 (2011) 67-76. 

  11. Rotational strength sign and normal modes description: A theoretical and experimental comparative study in bicyclic terpenes; Chirality 22 (2010) E123-E129.

  12. Chiral terpenes in different matrices: R-(+)-camphor studied by IR-Raman-VCD spectroscopies and quantum chemical calculations; Asian Journal of Spectroscopy 14 (2010) 1-21.

  13. Conformational landscape in chiral terpenes from vibrational spectroscopy and quantum chemical calculations: S-(+)-carvone; Vibrational Spectroscopy 51 (2009) 318-325.

  14. Terpenes in the gas phase: The structural conformation of S-(-)-perillaldehyde investigated by microwave spectroscopy and quantum chemical calculations; Chemical Physics Letters 473 (1-3) (2009) 17-20.

  15. Conformational preference of a chiral terpene: vibrational circular dichroism (VCD), infrared and Raman study of S-(-)-limonene oxide; Physical chemistry chemical physics 11 (14) (2009) 2459-2467.

  16. Conformational study of (R)-(+)-limonene in the liquid phase using vibrational spectroscopy (IR, Raman, and VCD) and DFT calculations; Tetrahedron Asymmetry 20 (1) (2009) 89-97.

  17. Conformational flexibility in terpenes: Vibrational Circular Dichroism (VCD), infrared and Raman study of S-(-)-perillaldehyde; Journal of Physical Chemistry A 112 (34) (2008) 7887-7893.

  18. Triethylsilanol: Molecular conformations and role of the hydrogen-bonding oligomerization in its vibrational spectra; Journal of Physical Chemistry A 112 (7) (2008) 1545-1551.

  19. Raman and IR spectra of the unstable ionic species potassium trimethylsilanolate: The role of the counterion in its theoretical interpretation; Journal of Raman Spectroscopy 39 (4) (2008) 460-467.

  20. Photoinduced chiral nematic organization in an achiral glassy nematic azopolymer; Advanced Functional Materials 17 (17) (2007) 3486-3492.

  21. Conformations, structures, and vibrational spectra of triethylchloro- And triethylbromosilane using theoretical methods, gas phase electron diffraction, and IR and RAMAN spectroscopy; Journal of Physical Chemistry A 111 (15) (2007) 2870-2878.

  22. Validation of the existence of tetrameric species of potassium trimethylsilanolate in the gas phase with a theoretical cluster model: Role of the counterion as charge localizer in the structure; Journal of Physical Chemistry A 111 (13) (2007) 2629-2633.

  23. Structure and vibrational spectra of vinyl ether conformers. The comparison of B3LYP and MP2 predictions; Chemical Physics 333 (2-3) (2007) 148-156.

  24. Vibrational spectra and structure of methoxysilanes and products of their hydrolysis; Vibrational Spectroscopy 40 (1) (2006) 1-9.

  25. An experimental and theoretical study of the molecular structure and vibrational spectra of iodotrimethylsilane (SiIMe3); Physical Chemistry Chemical Physics 8 (4) (2006) 477-485.

  26. The vibrational spectra of (CH3)3SiX (S = H, F, Br) molecules, revisited: Transferable scale factor sets for methylsilane derivatives; Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 62 (4-5) (2005) 1058-1069.

  27. Vibrational spectrum of chlorotrimethylsilane; Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 62 (1-3) (2005) 293-301.

  28. Anharmonic spectra of methanol and silanol: A comparative study; Journal of Molecular Spectroscopy 233 (2) (2005) 203-209.

  29. Structure and vibrational spectra of dimethylsilanediol and methylsilanetriol dimers; Chemical Physics Letters 412 (4-6) (2005) 359-364.

  30. Vibrational spectrum of methoxytrimethylsilane; Journal of Molecular Structure 744-747 (2005) 331-338.

  31. Intramolecular hydrogen bonding in silanediols; Journal of Molecular Structure (THEOCHEM) 678 (1-3) (2004) 249-256.

  32. Hydrogen bonding and structure of silanediol dimers and tetramers; Chemical Physics Letters 384 (4-6) (2004) 326-331.

  33. Vibrational spectra of trimethylsilanol: The problem of the assignment of the SiOH group frequencies; Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 60 (5) (2004) 1169-1178.

  34. A new insight into the vibrational analysis of pyridine; Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 59 (12) (2003) 2815-2839.

  35. Condensation reactions in silanol-water clusters; Chemical Physics Letters 368 (5-6) (2003) 616-624.

  36. Effect of the silyl substitution on structure and vibrational spectra of hydrogen-bonded networks in dimers, cyclic trimers, and tetramers; Journal of Physical Chemistry A 106 (47) (2002) 11644-11652.

  37. Astrophysical molecules AlD and CaH: Transition probabilities and dissociation energy; Astrophysics and Space Science 272 (4) (2000) 345-352.

  38. Vibrational analysis of the inelastic neutron scattering spectrum of pyridine; Chemical Physics 261 (1-2) (2000) 239-247.

 

 

 

 

línea del pié de página
© Universidad de Jaén. Página mantenida por fpartal ujaen.es.
Última actualización: 6 de noviembre de 2012.