SECCIÓN I.- INTRODUCCIÓN A LA MICROBIOLOGÍA Y LA GENÉTICA.

Tema 1.- Concepto y desarrollo histórico de la Microbiología y la Genética.

- Concepto y materias objeto de estudio de la Microbiología y la Genética
- Historia de la Microbiología
 - Desarrollo de los primeros microscopios
 - La controversia de la generación espontánea
 - Teoría microbiana de las enfermedades infecciosas: los postulados de Koch
 - Desarrrollo de la Microbiología en el siglo XX
- Historia de la Genética bacteriana
 - · Transformación bacteriana: ensayos de Griffith
 - Conjugación bacteriana: estudios de Lederberg y Tatum
 - Transducción bacteriana: ensayos de Norton Zinder

SECCIÓN II. - VIROLOGÍA.

Tema 2.- Composición química, estructura y ciclos replicativos de los virus.

- Concepto de virus
- Viroides, satélites y priones: estructura y características distintivas
- Composición y estructura de los virus
 - Tamaño de los virus
 - Estructura viral: ácido nucleico, cápsida y envueltas virales
- Ciclos replicativos virales
 - · Ciclo lítico
 - Adsorción
 - Penetración
 - Desencapsulamiento
 - Síntesis viral en los distintos tipos de virus
 - Maduración
 - Liberación
 - Ciclo lisogénico
 - Tipos virales que lo desarrollan
 - Estadíos típicos del ciclo lisogénico
 - Inducción del ciclo lítico
 - Inmunidad a superinfección

Tema 3. - Principales grupos taxonómicos virales.

- Criterios taxonómicos para la clasificación de los virus
- Virus bacteriófagos: clasificación y principales representantes
- Virus de plantas: clasificación y principales representantes
- Virus animales: clasificación y principales representantes de interés en clínica humana

SECCIÓN III. - BACTERIOLOGÍA.

Tema 4.- Reino *Procaryotae*. Estructura general de la célula bacteriana. Polímeros extracelulares.

- Reino Prokaryotae
 - Dominio Bacteria: ramas evolutivas y principales características
 - Dominio Archaea: propiedades bioquímicas y condiciones de crecimiento
- Dominio Eukarya: principales grupos y su diferenciación: algas, hongos y protozoos
- Tamaño y morfología de las bacterias: agrupaciones bacterianas
- Esquema de la estructura general de la célula bacteriana
- Polímeros extracelulares: envueltas bacterianas
 - Capas de la estructura paracristalina (capas 5): estructura, composición y funciones
 - Cápsulas y capas mucosas: el glicocáliz: diferencias, estructura, composición y funciones

Tema 5. - La pared celular.

- Funciones de la pared celular
- Tinción de Gram: criterio taxonómico básico
- Peptidoglicano
 - · Estructura y composición química
 - Diferencias en el peptidoglicano de bacterias Gram positivas y Gram negativas
- Acidos teicoicos: composición química y funciones
- Pared celular en el dominio Archaea
 - Pseudopeptidoglicano
 - Otras paredes celulares

- Formas carentes de pared celular: formación de protoplastos y esferoplastos
- Síntesis de la pared celular
- Membrana externa de las bacterias Gram negativas
 - Lipopolisacárido: endotoxinas
 - Porinas: estructura y funciones
 - Zona periplásmica

Tema 6.- La membrana citoplasmática. Transporte de sustancias a través de membranas biológicas.

- Funciones de la membrana plasmática
- Estructura y composición química
- Agentes reforzantes de las membranas
 - Hopanoides
 - Esteroles
- Proteínas periféricas de membrana
- Membranas de arqueobacterias
- Transporte de sustancias a través de membranas biológicas
 - · Difusión o transporte pasivo no específico
 - · Transporte facilitado: proteínas de transporte de membrana
 - Transporte activo
 - Transporte por translocación de grupo
 - Transporte asociado a gradiente de protones
 - Transporte activo sensible a choque osmótico

Tema 7.- El citoplasma bacteriano.

- El genoma bacteriano: estructura del ADN en procariotas
- Inclusiones citoplasmáticas
 - Inclusiones de reserva
 - Gránulos de polihidroxibutírico (PHB)
 - Gránulos de glucógeno
 - Gránulos de polifosfato
 - Gránulos de azufre elemental
 - Inclusiones no de reserva
 - Magnetosomas
 - Vesículas de gas

Tema 8. - Apéndices filamentosos y movimiento bacteriano.

- El flagelo bacteriano
 - Estructura, distribución y composición química
 - Movimiento flagelar
 - · Biosíntesis y crecimiento flagelar
- Quimiotaxis, fototaxis y otras taxias
- Fimbrias y pili: estructura y funciones

Tema 9.- Formas de diferenciación y resistencia en microorganismos.

- La endospora bacteriana
 - · Importancia de las endosporas en el medio ambiente
 - Estructura y composición química de las endosporas bacterianas
 - Diferencias estructurales entre las endosporas y las células vegetativas
 - · Fases de la esporulación
- Proceso de germinación
 - Activación
 - Germinación
 - Crecimiento

Tema 10.- El crecimiento bacteriano. Su determinación y control.

- Crecimiento celular: procesos sintéticos, ensamblaje y fisión binaria
- Crecimiento de poblaciones
 - · Velocidad de crecimiento
 - Tiempo de generación
 - · Crecimiento exponencial
- Ciclo de crecimiento de poblaciones en un cultivo en "batch"
 - Fase de latencia
 - · Fase exponencial
 - · Fase estacionaria
 - Fase de muerte
- Determinación del crecimiento
 - Determinación del número de células
 - Recuento directo en cámara
 - Recuento de células viables
 - · Determinación de la masa celular
 - Determinación del peso
 - Medidas de turbidez
- Cultivo continuo: el quimiostato
- Efecto de agentes físicos y químicos sobre el crecimiento y viabilidad de los microorganismos
 - Agentes físicos: temperatura, pH, disponibilidad de agua, oxígeno
 - Agentes químicos
 - Antisépticos y desinfectantes
 - Agentes quimioterapéuticos
 - Antibióticos
- Métodos de esterilización
 - · Métodos físicos: calor, radiación, filtración
 - · Métodos químicos: óxido de etileno

Tema 11.- Nutrición y metabolismo bacterianos.

- Clasificación metabólica de los microorganismos
- Vías para la generación de energía
 - · Fermentación y fosforilación a nivel de sustrato
 - Respiración aerobia
 - Respiración anaerobia: aceptores de electrones
 - Metabolismo quimiolitotrofo: donadores de electrones
 - Fotosíntesis oxigénica y anoxigénica
 - Otros procesos metabólicos: fijación de nitrógeno

Tema 12.- Taxonomía bacteriana: criterios taxonómicos. Espiroquetas, bacterias helicoidales y curvadas.

- Introducción a la taxonomía
 - · Criterios taxonómicos
 - · Definición de especie y género bacterianos
 - Sistema binomial
 - Manual Bergey de Bacteriología Sistemática
- Espiroquetas: morfología, movilidad y clasificación
- Bacterias helicoidales y curvadas: clasificación e importancia ecológica

Tema 13.- Bacterias Gram negativas. Micoplasmas.

- Bacilos y cocos Gram negativos aerobios: familias de interés clínico y medioambiental
- Bacilos Gram negativos anaerobios facultativos
- Bacilos Gram negativos anaerobios
- Cocos anaerobios Gram negativos
- Rickettsias y clamidias: características diferenciales, ciclo biológico e interés clínico

Micoplasmas: estructura, ciclo biológico y clasificación

Tema 14.- Cocos y bacilos Gram positivos. Micobacterias y nocardiformes.

- Cocos Gram positivos: principales familias y géneros de interés
- Bacilos y cocos Gram positivos formadores de esporas: importancia ecológica como insecticidas bacterianos
- Bacilos Gram positivos no formadores de endosporas
 - Bacilos regulares: importancia en industrias de derivados lácteos
 - Bacilos irregulares: importancia clínica e industrial
- Micobacterias: tinción específica e importancia en clínica
- Nocardiformes: interés en biodegradación del petróleo
- Bacterias quimiolitotrofas aerobias: importancia medioambiental

Tema 15. - Bacterias fototróficas.

- Características generales y clasificación
- Bacterias fototrofas anoxigénicas
 - · Bacterias rojas o purpúreas
 - Bacterias verdes
 - Heliobacterias
 - · Ecología del grupo
- Bacterias fototrofas oxigénicas: cianobacterias
 - Diversidad morfológica
 - · Estructuras características
 - Ecología
- Proclorofitos

Tema 16.- Bacterias gemantes y/o con apéndices. Bacterias con vaina. Bacterias deslizantes.

- Bacterias gemantes y/o con apéndices
 - Características morfológicas típicas
 - Ciclos celulares
- Bacterias con vaina
 - · Ciclo vital
 - Hábitats e importancia ecológica
- Bacterias deslizantes
 - Tipos de movimiento
 - · Mixobacterias fructificantes: ciclo biológico

Tema 17. - Actinomicetos. Arqueobacterias.

- Actinomicetos
 - · Características diferenciales
 - Importancia como productores de antibióticos
- Arqueas
 - · Halófilos extremos: características y clasificación
 - Metanógenos: propiedades metabólicas y clasificación
 - Hipertermófilos: características y clasificación
 - Género Thermoplasma: características diferenciales

SECCIÓN IV.- MICROORGANISMOS EUCARIOTAS.

Tema 18. - Microorganismos eucariotas.

- Hongos
 - Características generales y clasificación
 - Hongos filamentosos: ciclo replicativo y actividad ecológica
 - Levaduras: ciclo de crecimiento, hábitat y aplicación industrial
 - Hongos mucosos: características y clasificación
- Algas
 - Características generales
 - Ecología
- Protozoos
 - · Características diferenciales
 - Ecología
 - Clasificación e importancia clínica

SECCIÓN V.- ECOLOGÍA MICROBIANA.

Tema 19.- Introducción a la ecología microbiana.

- Métodos en ecología microbiana
 - · Métodos de evaluación de la biodiversidad
 - Medidas de la actividad microbiana
- Hábitats microbianos
 - Hábitats acuáticos
 - Ambientes terrestres
 - Ambiente aéreo
 - Ecosistema microbiano del rumen
- Ciclos biogeoquímicos
 - · Ciclo del carbono

 - Ciclo del azufre
 - · Ciclo del hierro: drenaje ácido de las minas y lixiviación
 - Ciclos del mercurio y oligoelementos: importancia ecológica y medioambiental
- Degradación microbiana de compuestos xenobióticos y recalcitrantes
 - Biodegradación del petróleo
 - Biodegradación de compuestos xenobióticos: plaguicidas y polímeros sintéticos

SECCIÓN VI. - GENÉTICA.

Tema 20. - Estructura y organización del ADN.

- Macromoléculas e información genética: procesos genéticos en procariotas y eucariotas
- Estructura del ADN en procariotas
- Elementos genéticos
 - Cromosoma
 - Plásmidos
 - Elementos genéticos de orgánulos
 - Elementos transponibles: secuencias de inserción y transposones

Tema 21.- Mecanismos de transferencia de información genética entre microorganismos.

- Transformación genética
 - · Concepto
 - · Base genética
 - Concepto de competencia: proteínas específicas e inducción artificial de competencia
 - Incorporación del ADN en bacterias Gram positivas y Gram negativas
 - · Mecanismo de integración del ADN transformante
 - · Conceptos de transfección
- Transducción
 - · Concepto
 - Transducción generalizada: base genética y etapas
 - Transducción especializada: base genética y etapas
- Conjugación
 - Concepto
 - Plásmidos conjugativos: plásmido F de Escherichia coli. Cepas F, F y Hfr
 - · Mecanismo de transferencia del ADN
 - Importancia ecológica del proceso de conjugación

Tema 22. - Regulación de la expresión génica.

- Importancia ecológica de la regulación de la expresión génica
- Regulación de la actividad enzimática
 - · Inhibición por producto
 - Inhibición por retroalimentación: enzimas alostéricas
 - · Modificación covalente
- Regulación de la transcripción
 - · Represión enzimática
 - Inducción enzimática
 - · Control positivo
 - Atenuación
 - Mecanismos de control global: represión catabólica
- Procesos de transducción de señales
 - · Sistemas reguladores de dos componentes
 - Mecanismo de quimiotaxis
- Regulación en organismos eucariotas

Tema 23.- Aislamiento de microorganismos mutantes: aplicación a la detección de sustancias con actividad tóxica.

- Mutaciones y mutantes
 - · Concepto de mutación
 - Mutaciones seleccionables y no seleccionables
 - Agentes mutágenos
 - Mutágenos físicos
 - Mutágenos químicos
 - Mutaciones por reparación del ADN
 - Mutagénesis dirigida
- Aislamiento de microorganismos mutantes
 - · Correlación mutagénesis-carcinogénesis
 - · Test de Ames: metodología básica y aplicaciones
 - Mutagénesis con elementos transponibles
 - Aplicación a la selección positiva de microorganismos auxotrofos
 - Empleo del bacteriófago Mu como mutágeno biológico