

EXAMEN DE ÁLGEBRAGRADO EN INGENIERÍA INFORMÁTICA Convocatoria de JUNIO de 2012

Nombre:			DNI:		
CONVALIDADOS:					
GRUPOS Y POLINOMIOS	□ SÍ. Nota	GRAFOS	□ SÍ. Nota □ NO	PRÁCTICAS	☐ Apto ☐ No apto

1. (10 puntos). Aplicar, si es posible, el algoritmo de Euclides en $\mathbb{Z}[x]$ y calcular el máximo común divisor y el mínimo común múltiplo de:

$$p(x) = x^4 - 1$$
 y $q(x) = x^3 - x$

- 2. (10 puntos). Sea $G = A_2 \times \mathbb{Z}_3$ se pide: ¿Es posible que G sea un grupo? En caso afirmativo calcular su tabla de operaciones, el elemento neutro y el elemento simétrico. ¿Cuántos subgrupos propios tiene?
- **3.** (10 puntos) Estudiar si el hexágono es regular, completo, plano, de Euler, de Hamilton, conexo, 3-coloreable y 2-cromático. Enunciar el teorema del número de caminos y las consecuencias necesarias. Utilizarlo para determinar el número total de geodésicas de longitud menor o igual a 2 del hexágono.
- **4.** (15 puntos) Sea \mathbb{R}^2 el espacio vectorial euclídeo de dimensión 2 con producto escalar es:

$$<(x_1, x_2), (y_1, y_2)> = x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2$$

- a) Calcular la matriz de Gram respecto de la base canónica.
- b) Sin usar Gram-Schmidt, calcular una base ortogonal tal que el vector (1, 1) pertenezca a ella y con ésta determinar una base ortonormal.
- c) Calcular una matriz diagonal, si es posible, semejante a la matriz de Gram que has calculado en a).
- 5. (15 puntos). Sea $V = M_2(\mathbb{R})$ y sea U el subconjunto de V de todas las matrices triangulares superiores.
 - a) ¿Es U un subespacio vectorial? En caso afirmativo, calcular una base, sus ecuaciones paramétricas e implícitas. Calcular un suplementario.
 - b) Sea $f: \mathbb{R}^3 \longrightarrow V$ la aplicación lineal definida por: $f(x, y, z) = \begin{pmatrix} x & x + y \\ 0 & z \end{pmatrix}$. Calcular la expresión matricial de f respecto de las bases canónicas. Calcular Ker(f) e Im(f). Clasificar f.

Nota