ÁLGEBRA (Grado en Ingeniería Informática)

CURSO 2022/23. Convocatoria Extraordinaria 2

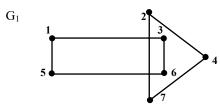
Apellidos y nombre:	DNI:	
Gr. Teoría: Gr. Práct.:		

Evaluación	□ Si	☐ Polinomios. Nota:	Prácticas: ☐ Ev. Continua.
Continua	□ No	☐ Teoría de Grafos. Nota:	Nota

1. [10 puntos] Calcular las raíces y factorizar el polinomio

$$p(x) = 50x - 500x^2 + 1300x^3 - 500x^4 + 1250x^5$$
 en los anillos de polinomios $\mathbb{Z}[x]$, $\mathbb{Z}_3[x]$, $\mathbb{Q}[x]$ y $\mathbb{C}[x]$. ¿Qué polinomios irreducibles aparecen en las factorizaciones?

- 2. [10 puntos] Sea G el conjunto de todos los dígitos que aparecen en la fecha de hoy (26/06/2023). Define una estructura de grupo abeliano en G de forma que los subconjuntos $H_1 = \{2, 6\}$ y $H_2 = \{2, 3\}$ sean subgrupos.
- 3. [10 puntos] Dado G_1 el grafo representado debajo y G_2 el grafo con dos <u>componentes</u> <u>conexas</u> que son $K_{2,2}$ y K_3 . Estudiar si son <u>isomorfos</u> y en caso afirmativo, razonar la respuesta.



4. [15 *puntos*]

A)[6 puntos] Consideremos el espacio vectorial $V = (\mathbb{Z}_5)^3$ y el subespacio

$$U = \{(a, b, c) \in V / a - 2b = 0, 3a + b + 4c = 0, a + c = 4b\}$$

Calcular, de forma razonada, dimensión, base, ecuaciones paramétricas e implícitas de U.

B) [9 puntos] Sea V un espacio vectorial euclídeo dos dimensional con base $B = \{e_1, e_2\}$ y cuyo producto escalar respecto de B viene dado por la matriz de Gram,

$$G = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

- a. Calcular el ángulo que forman los dos vectores de la base.
- b. ¿Es G una matriz congruente a la matriz identidad? En caso afirmativo, comprobarlo explícitamente.

NOTA:

Incluir las definiciones de los conceptos subrayados. Entregar cada ejercicio en un folio y en orden.

Los alumnos que quieran utilizar evaluación continua en algún tema, deberán obtener un mínimo de 4 sobre 10 de media entre las restantes preguntas que tengan que realizar.

5. [15 puntos] Sean $V = P_3(\mathbb{K})$ y $V' = M_2(\mathbb{K})$ los espacios vectoriales de los polinomios de grados menor o igual a 3 con coeficientes en \mathbb{K} y de la matrices cuadradas de orden 2 con coeficientes en \mathbb{K} , siendo $\mathbb{K} = \mathbb{Q}$ o \mathbb{R} , respectivamente. Consideremos la <u>aplicación</u> lineal f: $V \to V'$ dada por:

$$f(p(x)) = \begin{pmatrix} p(0) & p'(0) \\ p(1) & p'(1) \end{pmatrix}$$

donde p'(x) es la derivada de p(x). Se pide:

- i) Calcular la matriz A asociada a f respecto de las bases canónicas.
- ii) Dados $B = \{x^2 1, x + 1, x 1, x^3\}$ y $B' = \{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\}$ subconjuntos de V y V' respectivamente. Demostrar que son bases de sus respectivos espacios vectoriales y calcular la matriz asociada a f respecto de dichas bases.
- iii) Razonar si f es un isomorfismo.
- iv) Estudiar si A es diagonalizable por semejanza.