ÁLGEBRA (Grado en Ingeniería Informática)

CURSO 2018/19. Convocatoria Ordinaria 2.

Nombre:		I	ONI:	Gr. Teoría: C	Gr. Práct.:
Evaluación	☐ Sí, Apto. ()	Evaluación Continua	☐ Sí, Apto. ()	Evaluación	☐ Sí, Apto. ()
Continua Prácticas	□ No	Polinomios	□ No	Continua Grafos	□ No
de ordenador	☐ Actividad	(Pregunta 1)		(Pregunta 3)	

1. [10 puntos - Polinomios] Utilizar el algoritmo de Euclides para calcular el m.c.d. y el m.c.m. en $Z_7[x]$ de los siguientes polinomios:

$$p(x) = 1 + 6x + 5x^4 + 2x^5$$
 y $q(x) = 3x + 6x^2 + 5x^3 + 3x^4$

Determinar un asociado de p(x) y otro de q(x) (distintos de p(x) y q(x) resp.) y calcular el m.c.d. de los asociados obtenidos.

- **2.** [10 *puntos*] Consideramos los grupos S_3 y A_3 con la operación composición de permutaciones y \mathbb{Z} con la suma. Se pide:
 - a. Definir una operación * en $S_3 \times A_3 \times \mathbb{Z}$ que lo dote de estructura de grupo.
 - b. Calcular, si es posible, 4 elementos distintos de $S_3 \times A_3 \times \mathbb{Z}$ tales que al operarlos consigo mismo resulte el elemento neutro del grupo.
 - c. Calcular, si es posible, dos subgrupos distintos de 3 elementos y dos subgrupos distintos de 6 elementos.
 - d. Calcular el simétrico de $(\sigma, \tau, 5)$ donde $\sigma = (2 3)$ y $\tau = (1 2 3)$.
- **3.** [10 puntos **Grafos**] Sea G = (W, F) el grafo no orientado con $W = \{1, 2, 3, 4, 5, 6,\}$ y $F = \{\{1, 2\}, \{3, 4\}, \{1, 5\}, \{2, 5\}, \{3, 5\}, \{4, 5\}, \{2, 4\}, \{1, 3\}, \{1, 6\}, \{2, 6\}, \{3, 6\}, \{4, 6\}\}.$

Se pide, <u>definir los conceptos que intervengan</u>, y contestar razonadamente las siguientes cuestiones:

- a) Calcular su matriz de adyacencia y representarlo gráficamente.
- b) ¿Es <u>regular</u>?
- c) Determinar si es un grafo de Euler y en caso afirmativo calcular un ciclo de Euler.
- d) Calcular su número cromático y una coloración óptima. ¿Es 4-coloreable?
- **4.** [15 puntos]
 - a. Definir una aplicación lineal f de \mathbb{R}^3 en \mathbb{R}^3 tal que $(1, 1, 1) \in \text{Ker}(f)$, f(0, 1, 0) = (0, 3, 0) y (1,0,-1) sea un vector propio asociado al valor propio -1.
 - b. ¿Es f automorfismo?
 - c. ¿Es f diagonalizable por semejanza? En caso afirmativo obtener una base de vectores propios y calcular la expresión matricial de f respecto de ella.
 - d. Calcular la expresión matricial de f respecto de la base canónica.
 - e. ¿Qué relación tienen las matrices que has calculado en c. y d.? Comprobarlo explícitamente.
- **5.** [15 *puntos*] Sea $U = \left\{ \begin{pmatrix} b+2c & a+b+2c \\ 0 & -b-2c \end{pmatrix} \mid a,b,c \in \mathbb{R} \right\}$ un subespacio vectorial del espacio vectorial euclideo $V = M_2(\mathbb{R})$ con producto escalar $\langle A, C \rangle = \operatorname{tr}(A \cdot C^t)$. Se pide:
 - a. Calcular B una base, dimensión, ecuaciones paramétricas e implícitas de U.
 - b. Calcular la matriz de Gram del espacio vectorial euclideo U respecto de la base B.
 - c. ¿Es *B* ortogonal?.
 - d. Calcular una base ortonormal de U.