Exercise 2

```
Compute the Gauss curvature for \(\mathrm{X}(\mathrm{u}, \mathrm{v})=\)
    \(\{-\operatorname{Cos}[\mathbf{u}](2+\operatorname{Cos}[\mathbf{v}])+2 \operatorname{Sin}[\mathbf{v}],(2+\operatorname{Cos}[\mathbf{v}]) \operatorname{Sin}[\mathbf{u}]+2 \operatorname{Sin}[\mathbf{v}],-\operatorname{Sin}[\mathbf{v}]\}\)
    at the point \((u, v)=(5,1)\).
```

To define a surface we use the usual notation for vectorial multivariate functions with Mathematica
$\ln [3]=X\left[u_{-}, v_{-}\right]:=\{-\operatorname{Cos}[\mathbf{u}](2+\operatorname{Cos}[\mathbf{v}])+2 \operatorname{Sin}[v],(2+\operatorname{Cos}[v]) \operatorname{Sin}[u]+2 \operatorname{Sin}[v],-\operatorname{Sin}[v]\}$
We can compute the tangen vector with the partial differential operator that we can find in the palette

1	2	3	-	$(\mathbf{)})$	1.	\rightarrow
0	.	N	+	$\{\mathbf{~}\}$,	$=$

Navegación						
Comandos básicos						
\sqrt{x}	$d \int \Sigma$		Lista	2D		
Cálculo						
	D				m	
Integrate			Integrate (definida)			
			DSolve			
			$\partial_{\square, \square} ■$			
			$\int_{\square}^{\square} \square d \square$			
$\sum_{\square=\square}^{\square} \square$			$\Pi_{\square=\square}^{\square}$			

Therefore the tangent vector $X_{u}(u, v)$ and $X_{v}(u, v)$ can be computed as

```
\(\ln [4]:=\partial_{\mathbf{u}} \mathbf{X}[\mathbf{u}, \mathbf{v}]\)
\(O\) out \([4]=\{(2+\operatorname{Cos}[\mathbf{v}]) \operatorname{Sin}[\mathbf{u}], \operatorname{Cos}[\mathbf{u}](2+\operatorname{Cos}[\mathbf{v}]), 0\}\)
\(\ln [5]:=\boldsymbol{\partial}_{\mathbf{v}} \mathbf{X}[\mathbf{u}, \mathbf{V}]\)
Out[[] \(=\{2 \operatorname{Cos}[\mathbf{v}]+\operatorname{Cos}[\mathbf{u}] \operatorname{Sin}[\mathbf{v}], 2 \operatorname{Cos}[\mathbf{v}]-\operatorname{Sin}[\mathbf{u}] \operatorname{Sin}[\mathbf{v}],-\operatorname{Cos}[\mathbf{V}]\}\)
```

To compute the unit normal vector, it is convenient to define our own version of the Norm command of Mathematica to compute the norm of a vector in the following way
$\ln [6]=\operatorname{norm}\left[u_{-}\right]:=\sqrt{\mathbf{u} . u}$
The unit tangent vector is $N(u, v)=\frac{X_{u}(u, v) \times X_{v}(u, v)}{\left\|X_{u}(u, v) \times X_{v}(u, v)\right\|}$, and thus (we use sam\|l letter n since capital letter N is already used by Mathematica for the numeric approximation command)
$\ln [8]:=n\left[u_{-}, v_{-}\right]:=\frac{\partial_{u} X[u, v] \times \partial_{v} X[u, v]}{\operatorname{norm}\left[\partial_{u} X[u, v] \times \partial_{v} X[u, v]\right]}$
The partial derivatives of the unit normal vector $N_{u}(u, v)$ and $N_{v}(u, v)$ can be obtained again by means of the palette by means of $\quad \partial_{\square} \quad$. We know that $N_{u}(u, v)$ and $N_{v}(u, v)$ fall inside the tangent
plane and therefore they can be obtained as linear combinations of the tangent vectors $X_{u}(u, v)$ and $X_{v}(u, v)$ as
$N_{u}(u, v)=\alpha_{u} X_{u}(u, v)+\beta_{u} X_{v}(u, v)$
$N_{v}(u, v)=\alpha_{v} X_{u}(u, v)+\beta_{v} X_{v}(u, v)$
We can write this linear system with Mathematica as
$\ln [12]:=\left\{\partial_{u} n[u, v]==\alpha_{u} \partial_{u} X[u, v]+\beta_{u} \partial_{v} X[u, v], \partial_{v} n[u, v]==\alpha_{v} \partial_{u} X[u, v]+\beta_{v} \partial_{v} X[u, v]\right\}$
We have to solve the corresponding linear system to compute $\alpha_{u}, \beta_{u}, \alpha_{v}, \beta_{v}$. With Mathematica we can solve such a system by means of the instruction Solve. We have to solve the mentiones variables $\alpha_{u}, \beta_{u}, \alpha_{v}, \beta_{v}$ so we have to indicate it to the instrucction. We use [[1]] to indicate that we want to extract the first and only solution from the result of Solve and we can also apply Simplify to obtain a more compact result.

```
ln[16]:=
```

```
solutions =
    Solve \(\left[\left\{\partial_{u} n[u, v]==\alpha_{u} \partial_{u} X[u, v]+\beta_{u} \partial_{v} X[u, v], \partial_{v} n[u, v]==\alpha_{v} \partial_{u} X[u, v]+\beta_{v} \partial_{v} X[u, v]\right\}\right.\),
        \(\left.\left\{\alpha_{u}, \beta_{u}, \alpha_{v}, \beta_{v}\right\}\right][[1]] / /\) Simplify
Out[16] \(=\left\{\alpha_{u} \rightarrow\left(\operatorname{Cos}[v](2+\operatorname{Cos}[v])^{2}\left(3+4 \operatorname{Cos}[v]^{2}+2 \operatorname{Cos}[2 v]+2(\operatorname{Cos}[u]-\operatorname{Sin}[u]) \operatorname{Sin}[2 v]\right)\right) /\right.\)
        \(\left(-(2+\operatorname{Cos}[v])^{2}\right.\)
            \(\left.\left(-3+\operatorname{Cos}[v]^{2}(-2+8 \operatorname{Cos}[u] \operatorname{Sin}[u])+2 \operatorname{Sin}[v]^{2}-2(\operatorname{Cos}[u]-\operatorname{Sin}[u]) \operatorname{Sin}[2 v]\right)\right)^{3 / 2}\),
    \(\beta_{u} \rightarrow-\left(\left(2 \operatorname{Cos}[v]^{2}(2+\operatorname{Cos}[v])^{3}(\operatorname{Cos}[u]+\operatorname{Sin}[u])\right) /\left(-(2+\operatorname{Cos}[v])^{2}(-3+\right.\right.\)
            \(\left.\left.\left.\operatorname{Cos}[\mathbf{v}]^{2}(-2+8 \operatorname{Cos}[u] \operatorname{Sin}[u])+2 \operatorname{Sin}[v]^{2}-2(\operatorname{Cos}[u]-\operatorname{Sin}[u]) \operatorname{Sin}[2 v]\right)\right)^{3 / 2}\right)\),
    \(\alpha_{v} \rightarrow-\left(\left(2 \operatorname{Cos}[v](2+\operatorname{Cos}[v])^{2}(1+\operatorname{Cot}[u]) \operatorname{Sin}[u]\right) /\left(-(2+\operatorname{Cos}[v])^{2}(-3+\right.\right.\)
            \(\left.\left.\left.\operatorname{Cos}[v]^{2}(-2+8 \operatorname{Cos}[u] \operatorname{Sin}[u])+2 \operatorname{Sin}[v]^{2}-2(\operatorname{Cos}[u]-\operatorname{Sin}[u]) \operatorname{Sin}[2 v]\right)\right)^{3 / 2}\right)\),
    \(\beta_{v} \rightarrow(2+\operatorname{Cos}[v])^{3} /\left(-(2+\operatorname{Cos}[v])^{2}\left(-3+\operatorname{Cos}[v]^{2}(-2+8 \operatorname{Cos}[u] \operatorname{Sin}[u])+\right.\right.\)
        \(\left.\left.\left.2 \operatorname{Sin}[v]^{2}-2(\operatorname{Cos}[u]-\operatorname{Sin}[u]) \operatorname{Sin}[2 v]\right)\right)^{3 / 2}\right\}\)
```

As the values obtained are quite difficult to retype, we stored the result in a variable called solutions.
Now we have to compute the determinant $\operatorname{det}\left(\left(\begin{array}{ll}\alpha_{u} & \beta_{u} \\ \alpha_{v} & \beta_{v}\end{array}\right)\right)$ and for this purpose we have to substitute in the determinant the values of $\alpha_{u}, \beta_{u}, \alpha_{v}, \beta_{v}$ obtained by means of Solve. To perform such a substitution we can use the substitution operator $/$.
$\ln [20]:=\operatorname{Gaussc} u r v a t u r e=\operatorname{Simplify}\left[\operatorname{Det}\left[\left(\begin{array}{ll}\alpha_{u} & \beta_{u} \\ \alpha_{v} & \beta_{v}\end{array}\right)\right] /\right.$ solutions $]$
Out [20] $=\operatorname{Cos}[\mathbf{v}] /((2+\operatorname{Cos}[\mathbf{V}])$
$\left.\left(-3+\operatorname{Cos}[v]^{2}(-2+8 \operatorname{Cos}[u] \operatorname{Sin}[u])+2 \operatorname{Sin}[v]^{2}-2 \operatorname{Cos}[u] \operatorname{Sin}[2 v]+2 \operatorname{Sin}[u] \operatorname{Sin}[2 v]\right)^{2}\right)$
We applied Simplify and stored the result in the variable Gausscurvature
Now we have to compute for the point $(u, v)=(5,1)$ as it was indicated in the exercise. We substitute the values for u and v by means of a new substitution rule and we apply N to obtain a numeric result
$\ln [22]:=\mathbf{N}$ [Gausscurvature $/ .\{\mathbf{u} \rightarrow \mathbf{5}, \mathbf{v} \rightarrow \mathbf{1 \}}$]
Out[22]=
0.00829818

In case that the exercise asks the mean curvature, instead of the determinant, we have to compute

```
    \(\frac{1}{2} \operatorname{trace}\left(\left(\begin{array}{ll}\alpha_{u} & \beta_{u} \\ \alpha_{v} & \beta_{v}\end{array}\right)\right)\). Therefore
\(\ln [24]:=\) Meancurvature \(=\operatorname{Simplify}\left[\frac{1}{2} \operatorname{Tr}\left[\left(\begin{array}{ll}\alpha_{u} & \beta_{u} \\ \alpha_{v} & \beta_{v}\end{array}\right)\right] /\right.\). solutions \(]\)
Out[24]= \(-\left(\left((2+\operatorname{Cos}[\mathbf{V}])^{2}\right.\right.\)
    \(\left.\left(-1-3 \operatorname{Cos}[\mathbf{v}]^{3}-2 \operatorname{Cos}[\mathbf{v}]^{2}(\operatorname{Cos}[\mathbf{u}]-\operatorname{Sin}[\mathbf{u}]) \operatorname{Sin}[\mathbf{v}]+\operatorname{Cos}[\mathbf{v}]\left(-2+\operatorname{Sin}[\mathbf{v}]^{2}\right)\right)\right) /\)
    \(\left(-(2+\operatorname{Cos}[v])^{2}\left(-3+\operatorname{Cos}[v]^{2}(-2+8 \operatorname{Cos}[u] \operatorname{Sin}[u])+2 \operatorname{Sin}[v]^{2}-\right.\right.\)
    \(\left.2 \operatorname{Cos}[u] \operatorname{Sin}[2 v]+2 \operatorname{Sin}[u] \operatorname{Sin}[2 v]))^{3 / 2}\right)\)
```

And in the same way we should compute for the point $(u, v)=(5,1)$
$\ln [25]:=\mathbf{N}$ [Meancurvature / $\{\mathbf{u} \rightarrow \mathbf{5}, \mathbf{v} \rightarrow \mathbf{1}\}$]
Out[25]= 0.0961275

