Exercise 2

```
Compute the Gauss curvature for X(u,v) = \{-\cos[u] (2 + \cos[v]) + 2\sin[v], (2 + \cos[v]) \sin[u] + 2\sin[v], -\sin[v]\}
at the point (u,v) = (5,1).
```

To define a surface we use the usual notation for vectorial multivariate functions with Mathematica

 $\ln[3] = X[u_{v_{1}}, v_{1}] := \{-\cos[u](2 + \cos[v]) + 2\sin[v], (2 + \cos[v])\sin[u] + 2\sin[v], -\sin[v]\}$

We can compute the tangen vector with the partial differential operator that we can find in the palette

	1	2	3	-	(∎)	1.	\rightarrow	∞	
	0		Ν	+	{∎}	,	=	!	
	Tab		Enter		Tr	TraditionalForm			
	Entrada desde arriba				Crea	Crear celda de entrada			
	Sal	da desde arriba Crear celda de te		texto					
	Comando completo					Crear plantilla			
Navegación									
Comandos básicos ?									
١	$\sqrt{x} y =$	= x c	ſ∫Σ	(::)	Lista	2D	3D		
	Cálcu	lo							
	Cálcu	lo C)			Li	mit		
	Cálcu	lo C Integ) Irate		Int	Li tegrat	mit :e (defi	nida)	
	Cálcu	Io D Integ Su) Irate m		Int	Li tegrat DS	mit :e (defi olve	nida)	
	Cálcu) Irate M		Int	Li tegrat DS ∂_{\Box}	mit æ (defi olve ,□ ■	nida)	
	Cálcu		o grate m dlo)	Int	Li tegrat DS ∂_{\Box}	mit :e (defi olve ,□ ■ ∎ <i>d</i> /□	nida)	
	Cálcu	Integration Σ_{α}^{α}	o grate m dl u)	Int	Li tegrat DS ∂_{\Box} $\int_{\Box}^{\Box} I$	mit e (defi olve , • • <i>d</i> /	inida)	

Therefore the tangent vector $X_u(u, v)$ and $X_v(u, v)$ can be computed as

```
\ln[4] = \partial_u X[u, v]
```

```
\mathsf{Out}[4]= \ \left\{ \ \left( 2 + Cos\left[ v \right] \right) \ Sin\left[ u \right] \text{, } Cos\left[ u \right] \ \left( 2 + Cos\left[ v \right] \right) \text{, } 0 \right\} \right\}
```

```
In[5]:= \partial_v X[u, v]
```

Out[5]= {2 Cos [v] + Cos [u] Sin [v], 2 Cos [v] - Sin [u] Sin [v], - Cos [v] }

To compute the unit normal vector, it is convenient to define our own version of the Norm command of Mathematica to compute the norm of a vector in the following way

```
ln[6]:= norm[u_] := \sqrt{u.u}
```

The unit tangent vector is $N(u, v) = \frac{X_u(u,v) \times X_v(u,v)}{\|X_u(u,v) \times X_v(u,v)\|}$, and thus (we use samll letter n since capital letter N is already used by Mathematica for the numeric approximation command)

$$\ln[B] = n[u_, v_] := \frac{\partial_u X[u, v] \times \partial_v X[u, v]}{norm[\partial_u X[u, v] \times \partial_v X[u, v]]}$$

The partial derivatives of the unit normal vector $N_u(u, v)$ and $N_v(u, v)$ can be obtained again by means of the palette by means of $\partial_{\Box} =$. We know that $N_u(u, v)$ and $N_v(u, v)$ fall inside the tangent

plane and therefore they can be obtained as linear combinations of the tangent vectors $X_u(u, v)$ and $X_v(u, v)$ as

$$\begin{split} N_u(u, v) &= \alpha_u X_u(u, v) + \beta_u X_v(u, v) \\ N_v(u, v) &= \alpha_v X_u(u, v) + \beta_v X_v(u, v) \end{split}$$

We can write this linear system with Mathematica as

 $\ln[12] = \{\partial_u n[u, v] = \alpha_u \partial_u X[u, v] + \beta_u \partial_v X[u, v], \partial_v n[u, v] = \alpha_v \partial_u X[u, v] + \beta_v \partial_v X[u, v] \}$

We have to solve the corresponding linear system to compute α_u , β_u , α_v , β_v . With Mathematica we can solve such a system by means of the instruction Solve. We have to solve the mentiones variables α_u , β_u , α_v , β_v so we have to indicate it to the instruction. We use [[1]] to indicate that we want to extract the first and only solution from the result of Solve and we can also apply Simplify to obtain a more compact result.

```
In[16]:= solutions =
```

Solve[{ $\partial_u n[u, v] == \alpha_u \partial_u X[u, v] + \beta_u \partial_v X[u, v], \partial_v n[u, v] == \alpha_v \partial_u X[u, v] + \beta_v \partial_v X[u, v]$ }, { $\alpha_u, \beta_u, \alpha_v, \beta_v$ }][[1]] // Simplify

$$\begin{array}{l} \text{Out[16]=} & \left\{ \alpha_{u} \rightarrow \left(\text{Cos}\left[v\right] \left(2 + \text{Cos}\left[v\right]\right)^{2} \left(3 + 4 \, \text{Cos}\left[v\right]^{2} + 2 \, \text{Cos}\left[2 \, v\right] + 2 \, \left(\text{Cos}\left[u\right] - \text{Sin}\left[u\right] \right) \, \text{Sin}\left[2 \, v\right] \right) \right) \right) \right. \\ & \left(- \left(2 + \text{Cos}\left[v\right]\right)^{2} \left(-2 + 8 \, \text{Cos}\left[u\right] \, \text{Sin}\left[u\right] \right) + 2 \, \text{Sin}\left[v\right]^{2} - 2 \, \left(\text{Cos}\left[u\right] - \text{Sin}\left[u\right] \right) \, \text{Sin}\left[2 \, v\right] \right) \right) \right\}^{3/2}, \\ & \beta_{u} \rightarrow - \left(\left(2 \, \text{Cos}\left[v\right]^{2} \left(2 + \text{Cos}\left[v\right]\right)^{3} \left(\text{Cos}\left[u\right] + \text{Sin}\left[u\right] \right) \right) \right) \right) \left(- \left(2 + \text{Cos}\left[v\right] \right)^{2} \left(-3 + \\ & \text{Cos}\left[v\right]^{2} \left(-2 + 8 \, \text{Cos}\left[u\right] \, \text{Sin}\left[u\right] \right) + 2 \, \text{Sin}\left[v\right]^{2} - 2 \, \left(\text{Cos}\left[u\right] - \text{Sin}\left[u\right] \right) \, \text{Sin}\left[2 \, v\right] \right) \right)^{3/2} \right), \\ & \alpha_{v} \rightarrow - \left(\left(2 \, \text{Cos}\left[v\right] \left(2 + \text{Cos}\left[v\right]\right)^{2} \left(1 + \text{Cot}\left[u\right] \right) \, \text{Sin}\left[u\right] \right) \right) \left(- \left(2 + \text{Cos}\left[v\right] \right)^{2} \left(-3 + \\ & \text{Cos}\left[v\right]^{2} \left(-2 + 8 \, \text{Cos}\left[u\right] \, \text{Sin}\left[u\right] \right) + 2 \, \text{Sin}\left[v\right]^{2} - 2 \, \left(\text{Cos}\left[u\right] - \text{Sin}\left[u\right] \right) \, \text{Sin}\left[2 \, v\right] \right) \right)^{3/2} \right), \\ & \beta_{v} \rightarrow \left(2 + \text{Cos}\left[v\right] \right)^{3} \left(- \left(2 + \text{Cos}\left[v\right] \right)^{2} \left(-3 + \text{Cos}\left[v\right]^{2} - 2 \, \left(\text{Cos}\left[u\right] - \text{Sin}\left[u\right] \right) \, \text{Sin}\left[2 \, v\right] \right) \right)^{3/2} \right\} \\ \end{array}$$

As the values obtained are quite difficult to retype, we stored the result in a variable called solutions.

Now we have to compute the determinant $det \begin{pmatrix} \alpha_u & \beta_u \\ \alpha_v & \beta_v \end{pmatrix}$ and for this purpose we have to substitute in the determinant the values of α_u , β_u , α_v , β_v obtained by means of Solve. To perform such a substitution we can use the substitution operator /.

In [20]:= Gausscurvature = Simplify
$$\left[\text{Det} \left[\begin{pmatrix} \alpha_u & \beta_u \\ \alpha_v & \beta_v \end{pmatrix} \right] / \text{. solutions} \right]$$

 $\begin{array}{l} \text{Out}_{[20]=} & \text{Cos}\left[\mathbf{v}\right] \middle/ \left(\left(2 + \text{Cos}\left[\mathbf{v}\right]\right) \\ & \left(-3 + \text{Cos}\left[\mathbf{v}\right]^2 \left(-2 + 8 \text{Cos}\left[\mathbf{u}\right] \text{Sin}\left[\mathbf{u}\right]\right) + 2 \text{Sin}\left[\mathbf{v}\right]^2 - 2 \text{Cos}\left[\mathbf{u}\right] \text{Sin}\left[2 \mathbf{v}\right] + 2 \text{Sin}\left[\mathbf{u}\right] \text{Sin}\left[2 \mathbf{v}\right]\right)^2 \right) \end{array}$

We applied Simplify and stored the result in the variable Gausscurvature

Now we have to compute for the point (u,v)=(5,1) as it was indicated in the exercise. We substitute the values for u and v by means of a new substitution rule and we apply N to obtain a numeric result

 $ln[22]:= N[Gausscurvature /. \{u \rightarrow 5, v \rightarrow 1\}]$

Out[22]= 0.00829818

In case that the exercise asks the mean curvature, instead of the determinant, we have to compute

$$\frac{1}{2}$$
trace $\begin{pmatrix} \alpha_u & \beta_u \\ \alpha_v & \beta_v \end{pmatrix}$. Therefore

In[24]:= Meancurvature = Simplify
$$\left[\frac{1}{2} \operatorname{Tr}\left[\begin{pmatrix} \alpha_{u} & \beta_{u} \\ \alpha_{v} & \beta_{v} \end{pmatrix}\right]$$
 /. solutions

$$\begin{array}{rcl} & \text{Out[24]=} & -\left(\left(\left(2 + \cos\left[\nu\right]\right)^{2} & \left(-1 - 3\cos\left[\nu\right]^{3} - 2\cos\left[\nu\right]^{2}\left(\cos\left[u\right] - \sin\left[u\right]\right) \sin\left[\nu\right] + \cos\left[\nu\right] \left(-2 + \sin\left[\nu\right]^{2}\right)\right)\right) \right) \\ & \left(-\left(2 + \cos\left[\nu\right]\right)^{2} \left(-3 + \cos\left[\nu\right]^{2} \left(-2 + 8\cos\left[u\right] \sin\left[u\right]\right) + 2\sin\left[\nu\right]^{2} - 2\cos\left[u\right] \sin\left[2\nu\right] + 2\sin\left[u\right] \sin\left[2\nu\right]\right)\right)^{3/2}\right) \end{array}$$

And in the same way we should compute for the point (u,v)=(5,1)

```
\label{eq:ln[25]:= N[Meancurvature /. {u \to 5, v \to 1}]} $$ Out[25]= 0.0961275
```