Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 1

Exercise 1

Given the function
$f(x, y)=-5 x^{3}-2 y^{3}$ defined over the domain $D \equiv$
$15 x^{2}+15 y^{2} \leqslant 435$, compute its absolute maxima and minima.

1) The value of the maximum is $* * * * \cdot 2 * * * *$
2) The value of the maximum is $* * * * .8 * * * *$
3) The value of the maximum is $* * * * .6 * * * *$
4) The value of the maximum is ****. $7 * * * *$
5) The value of the maximum is $* * * * \cdot 0 * * * *$

Exercise 2

Compute the volume of $D=\left\{x^{2}+y^{2}+z^{2} \leq 100, z \geq 8 \sqrt{x^{2}+y^{2}}\right\}$

1) -6.46927
2) 1.61732
3) -14.5559
4) 16.1732
5) 19.4078

Exercise 3

Compute the mean curvature for $X(u, v)=\{\operatorname{Cos}[u], \operatorname{Sin}[u], v\}$ at the point $(u, v)=(6,6)$.

1) $\mathrm{H}(6,6)=-7.10238$
2) $H(6,6)=0.5$
3) $\mathrm{H}(6,6)=5.77208$
4) $H(6,6)=-0.40802$
5) $\mathrm{H}(6,6)=-6.60287$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 2

Exercise 1

Given the function
$f(x, y)=3 x^{3}+5 y^{3}$ defined over the domain $D \equiv$
$9 x^{2}+15 y^{2} \leqslant 96$, compute its absolute maxima and minima.

1) The value of the maximum is $* * * * \cdot 7 * * * *$
2) The value of the maximum is $* * * * \cdot 9 * * * *$
3) The value of the maximum is $* * * * .1 * * * *$
4) The value of the maximum is $* * * * .4 * * * *$
5) The value of the maximum is $* * * * \cdot 5 * * * *$

Exercise 2

Compute the volume of $D=\left\{x^{2}+y^{2}+z^{2} \leq 144, z \geq 13\left(x^{2}+y^{2}\right)\right\}$

1) 17.3439
2) 20.8127
3) 41.6255
4) 19.0783
5) 5.20318

Exercise 3

Compute the mean curvature for $X(u, v)=\{3 u, 2 u, v\}$ at the point $(u, v)=(1,4)$.

1) $\mathrm{H}(1,4)=-8.3809$
2) $\mathrm{H}(1,4)=-6.39195$
3) $\mathrm{H}(1,4)=0$
4) $\mathrm{H}(1,4)=4.06274$
5) $\mathrm{H}(1,4)=7.53019$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 3

Exercise 1

Given the function
$f(x, y)=3 x^{3}+3 y^{3}$ defined over the domain $D \equiv$
$18 x^{2}+27 y^{2} \leqslant 1260$, compute its absolute maxima and minima.

1) The value of the minimum is $* * * * .9 * * * *$
2) The value of the minimum is $* * * * \cdot 3 * * * *$
3) The value of the minimum is $* * * * .5 * * * *$
4) The value of the minimum is $* * * * .6 * * * *$
5) The value of the minimum is $* * * * .4 * * * *$

Exercise 2

Compute the volume of $D=\left\{x^{2}+y^{2}+z^{2} \leq 25, z \geq 10 \sqrt{x^{2}+y^{2}}\right\}$

1) 3.24815
2) 2.85837
3) -0.909482
4) -1.03941
5) 1.29926

Exercise 3

Compute the mean curvature for $X(u, v)=\{\operatorname{Cos}[u], \operatorname{Sin}[u], v\}$ at the point $(u, v)=(5,3)$.

1) $\mathrm{H}(5,3)=-6.38251$
2) $\mathrm{H}(5,3)=-3.8128$
3) $\mathrm{H}(5,3)=1.2738$
4) $\mathrm{H}(5,3)=0.5$
5) $\mathrm{H}(5,3)=1.37318$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 4

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(\theta, \theta)} \frac{3\left(x^{3}+y^{3}\right)}{6 x-12 x^{2}-x^{3}+12 x^{4}-2 y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 196, \mathrm{z} \geq 8\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right\}$

1) 80.4578
2) 22.9879
3) 38.3132
4) -19.1566
5) -15.3253

Exercise 3

.... Solve: Unable to decide whether numeric quantity

$$
\frac{e^{2} \operatorname{Cos}[3]^{2}}{\left(1+e^{4}\right)^{3 / 2}}+\frac{3 e^{6} \operatorname{Cos}[3]^{2}}{\left(1+e^{4}\right)^{3 / 2}}+\frac{2 e^{10} \operatorname{Cos}[3]^{2}}{\left(1+e^{4}\right)^{3 / 2}}-\frac{e^{2} \operatorname{Cos}[3]^{2}}{\sqrt{1+e^{4}}}-\frac{2 e^{6} \operatorname{Cos}[3]^{2}}{\sqrt{1+e^{4}}}+\frac{e^{2} \sin [3]^{2}}{\left(1+e^{4}\right)^{3 / 2}}+\frac{3 e^{6} \operatorname{Sin}[3]^{2}}{\left(1+e^{4}\right)^{3 / 2}}+\frac{2 e^{10} \sin [3]^{2}}{\left(1+e^{4}\right)^{3 / 2}}-\frac{e^{2} \operatorname{Sin}[3]^{2}}{\sqrt{1+e^{4}}}
$$

$$
-\frac{2 e^{6} \sin [3]^{2}}{\sqrt{1+e^{4}}} \text { is equal to zero. Assuming it is. }
$$

Compute the Gauss curvature for $X(u, v)=\left\{e^{v} \operatorname{Cos}[u], e^{v} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(3,2)$.

1) $K(3,2)=4.46719$
2) $K(3,2)=-0.000323504$
3) $K(3,2)=-0.526514$
4) $K(3,2)=7.72663$
5) $K(3,2)=-2.00621$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for

 serial number: 5
Exercise 1

Given the function
$f(x, y)=4 x^{3}-3 y^{3}$ defined over the domain $D \equiv$
$30 x^{2}+18 y^{2} \leqslant 1038$, compute its absolute maxima and minima.

1) The value of the maximum is $* * * * .7 * * * *$
2) The value of the maximum is $* * * * \cdot 6 * * * *$
3) The value of the maximum is $* * * * .1 * * * *$
4) The value of the maximum is $* * * * .8 * * * *$
5) The value of the maximum is $* * * * \cdot 0 * * * *$

Exercise 2

Compute the volume of $D=\left\{5\left(x^{2}+y^{2}\right) \leq z \leq 196-x^{2}-y^{2}\right\}$

1) -4022.91
2) 19108.8
3) 10057.3
4) 8045.83
5) 18103.1

Exercise 3

... Solve: Unable to decide whether numeric quantity

$$
\begin{aligned}
& \frac{e^{9} \operatorname{Cos}[3]^{2}}{\left(1+e^{18}\right)^{3 / 2}}+\frac{3 e^{27} \operatorname{Cos}[3]^{2}}{\left(1+e^{18}\right)^{3 / 2}}+\frac{2 e^{45} \operatorname{Cos}[3]^{2}}{\left(1+e^{18}\right)^{3 / 2}}-\frac{e^{9} \operatorname{Cos}[3]^{2}}{\sqrt{1+e^{18}}}-\frac{2 e^{27} \operatorname{Cos}[3]^{2}}{\sqrt{1+e^{18}}}+\frac{e^{9} \sin [3]^{2}}{\left(1+e^{18}\right)^{3 / 2}}+\frac{3 e^{27} \sin [3]^{2}}{\left(1+e^{18}\right)^{3 / 2}}+\frac{2 e^{45} \sin [3]^{2}}{\left(1+e^{18}\right)^{3 / 2}}- \\
& \frac{e^{9} \sin [3]^{2}}{\sqrt{1+e^{18}}}-\frac{2 e^{27} \operatorname{Sin}[3]^{2}}{\sqrt{1+e^{18}}} \text { is equal to zero. Assuming it is. }
\end{aligned}
$$

Compute the mean curvature for $X(u, v)=\left\{e^{v} \operatorname{Cos}[u], e^{v} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(3,9)$.

1) $\mathrm{H}(3,9)=-8.92989$
2) $\mathrm{H}(3,9)=2.31134$
3) $\mathrm{H}(3,9)=7.41131$
4) $\mathrm{H}(3,9)=0$
5) $\mathrm{H}(3,9)=6.78322$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 6

Exercise 1

Given the function
$f(x, y)=2 x^{3}-3 y^{3}$ defined over the domain $D \equiv$
$15 x^{2}+18 y^{2} \leqslant 663$, compute its absolute maxima and minima.

1) The value of the maximum is ****. $2 * * * *$
2) The value of the maximum is $* * * * .6 * * * *$
3) The value of the maximum is $* * * * .9 * * * *$
4) The value of the maximum is $* * * * .7 * * * *$
5) The value of the maximum is $* * * * \cdot 5 * * * *$

Exercise 2

Compute the volume of $D=\left\{3\left(x^{2}+y^{2}\right) \leq z \leq 64-x^{2}-y^{2}\right\}$

1) 4503.79
2) -1286.8
3) 4664.64
4) 4503.79
5) 1608.5

Exercise 3

Compute the mean curvature for $X(u, v)=\{v \operatorname{Cos}[u], v \operatorname{Sin}[u], v\}$ at the point $(u, v)=(3,9)$.

1) $\mathrm{H}(3,9)=4.4489$
2) $\mathrm{H}(3,9)=0.0392837$
3) $\mathrm{H}(3,9)=5.4916$
4) $\mathrm{H}(3,9)=6.0251$
5) $\mathrm{H}(3,9)=1.81496$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 7

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(0,0)} \frac{-x^{4}+2 y^{4}}{-3 x-6 x^{2}+x^{4}+6 x^{5}+3 x^{6}+y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 225, \mathrm{z} \geq 7 \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}\right\}$

1) 71.0428
2) 120.773
3) 49.73
4) 191.816
5) 127.877

Exercise 3

Compute the Gauss curvature for $X(u, v)=\{u, u, v\}$ at the point $(u, v)=(3,4)$.

1) $K(3,4)=5.70855$
2) $K(3,4)=3.62018$
3) $K(3,4)=-4.74001$
4) $\mathrm{K}(3,4)=2.39803$
5) $K(3,4)=0$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 8

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(\theta, \theta)} \frac{x^{4}-3 y^{4}}{x^{4}+3(-1+x)^{2} x\left(1+x+x^{2}+x^{3}\right)-y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 64, \mathrm{z} \geq 10\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right\}$

1) 9.99053
2) 5.99432
3) 0.999053
4) 0.999053
5) 14.9858

Exercise 3

Compute the Gauss curvature for $X(u, v)=\{v \operatorname{Cos}[u], v \operatorname{Sin}[u], v\}$ at the point $(u, v)=(2,3)$.

1) $K(2,3)=-6.29612$
2) $K(2,3)=0$
3) $K(2,3)=-4.53797$
4) $K(2,3)=-8.80323$
5) $K(2,3)=-6.91246$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 9

Exercise 1

Given the function
$f(x, y)=5 x^{3}-y^{3}$ defined over the domain $D \equiv$
$45 x^{2}+3 y^{2} \leqslant 1632$, compute its absolute maxima and minima.

1) The value of the minimum is $* * * * \cdot 3 * * * *$
2) The value of the minimum is $* * * * .7 * * * *$
3) The value of the minimum is $* * * * .8 * * * *$
4) The value of the minimum is $* * * * .1 * * * *$
5) The value of the minimum is $* * * * .5 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 4, \mathrm{z} \geq 13\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right\}$

1) -1.12585
2) 0.474146
3) 0.174146
4) -0.525854
5) 1.67415

Exercise 3

Compute the mean curvature for $\mathrm{X}(\mathrm{u}, \mathrm{v})=\{\operatorname{Cos}[\mathbf{u}], \operatorname{Sin}[\mathbf{u}], \mathrm{v}\}$ at the point $(\mathbf{u}, \mathrm{v})=(0,8)$.

1) $\mathrm{H}(0,8)=0.5$
2) $\mathrm{H}(0,8)=3.04934$
3) $H(0,8)=-1.3149$
4) $\mathrm{H}(0,8)=-6.76818$
5) $\mathrm{H}(0,8)=5.89341$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 10

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(0,0)}-\frac{3 x^{3}+y^{3}}{x^{3}-3 x\left(1-x+x^{3}\right)+y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 225, \mathrm{z} \geq 6 \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}\right\}$

1) 67.323
2) 96.1757
3) 28.8527
4) 0 .
5) 221.204

Exercise 3

Compute the Gauss curvature for $X(u, v)=\left\{u, 3 u^{2}, v\right\}$ at the point $(u, v)=(2,6)$.

1) $K(2,6)=5.95422$
2) $K(2,6)=-8.14205$
3) $K(2,6)=0$
4) $K(2,6)=-1.59537$
5) $K(2,6)=5.56029$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 11

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{3}-2 y^{3}}{6 x-6 x^{2}+x^{3}-6 x^{4}-2 y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D=\left\{x^{2}+y^{2}+z^{2} \leq 196, z \geq 13\left(x^{2}+y^{2}\right)\right\}$

1) 66.1299
2) -18.8943
3) -2.36178
4) -18.8943
5) 23.6178

Exercise 3

(..) Solve: Unable to decide whether numeric quantity
$\frac{e^{10} \operatorname{Cos}[4]^{2}}{\left(1+e^{20}\right)^{3 / 2}}+\frac{3 e^{30} \operatorname{Cos}[4]^{2}}{\left(1+e^{20}\right)^{3 / 2}}+\frac{2 e^{50} \operatorname{Cos}[4]^{2}}{\left(1+e^{20}\right)^{3 / 2}}-\frac{e^{10} \operatorname{Cos}[4]^{2}}{\sqrt{1+e^{20}}}-\frac{2 e^{30} \operatorname{Cos}[4]^{2}}{\sqrt{1+e^{20}}}+\frac{e^{10} \sin [4]^{2}}{\left(1+e^{20}\right)^{3 / 2}}+\frac{3 e^{30} \sin [4]^{2}}{\left(1+e^{20}\right)^{3 / 2}}+\frac{2 e^{50} \operatorname{Sin}[4]^{2}}{\left(1+e^{20}\right)^{3 / 2}}-$ $\frac{e^{10} \sin [4]^{2}}{\sqrt{1+e^{20}}}-\frac{2 e^{30} \sin [4]^{2}}{\sqrt{1+e^{20}}}$ is equal to zero. Assuming it is.
... General: Further output of Solve::ztest1 will be suppressed during this calculation.
Compute the Gauss curvature for $X(u, v)=\left\{e^{v} \operatorname{Cos}[u], e^{v} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(4,10)$.

1) $K(4,10)=-6.57889$
2) $K(4,10)=-3.14031$
3) $K(4,10)=0$
4) $\mathrm{K}(4,10)=2.65134$
5) $\mathrm{K}(4,10)=1.22194$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 12

Exercise 1

Study the $\operatorname{limit,~}^{\lim _{(x, y) \rightarrow(\theta, 0)}} \frac{2\left(x^{4}-y^{4}\right)}{-3 x+6 x^{2}+x^{4}-6 x^{5}+y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 49, \mathrm{z} \geq 12\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right\}$

1) 2.55042
2) 11.4769
3) 13.3897
4) 3.82563
5) 6.37606

Exercise 3

Compute the Gauss curvature for $X(u, v)=\{v \operatorname{Cos}[u], v \operatorname{Sin}[u], v\}$ at the point $(u, v)=(6,7)$.

1) $K(6,7)=5.23761$
2) $K(6,7)=1.08237$
3) $K(6,7)=2.36297$
4) $K(6,7)=0$
5) $K(6,7)=7.07061$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 13

Exercise 1

Given the function
$f(x, y)=-4 x^{3}-4 y^{3}$ defined over the domain $D \equiv$
$6 x^{2}+6 y^{2} \leqslant 12$, compute its absolute maxima and minima.

1) The value of the minimum is $* * * * .2 * * * *$
2) The value of the minimum is $* * * * .1 * * * *$
3) The value of the minimum is $* * * * .6 * * * *$
4) The value of the minimum is $* * * * \cdot 5 * * * *$
5) The value of the minimum is $* * * * \cdot 3 * * * *$

Exercise 2

Compute the volume of $D=\left\{x^{2}+y^{2}+z^{2} \leq 225, z \geq 13 \sqrt{x^{2}+y^{2}}\right\}$

1) 16.6565
2) 18.7386
3) -4.16412
4) -2.08206
5) 20.8206

Exercise 3

Compute the mean curvature for $X(u, v)=\left\{3 u, 2 u^{2}, v\right\}$ at the point $(u, v)=(1,2)$.

1) $\mathrm{H}(1,2)=0.048$
2) $\mathrm{H}(1,2)=-7.27849$
3) $H(1,2)=6.00997$
4) $H(1,2)=7.04709$
5) $\mathrm{H}(1,2)=-5.81896$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 14

Exercise 1

Given the function
$f(x, y)=-3 x^{3}+y^{3}$ defined over the domain $D \equiv$
$9 x^{2}+3 y^{2} \leqslant 48$, compute its absolute maxima and minima.

1) The value of the maximum is $* * * * .7 * * * *$
2) The value of the maximum is $* * * * .9 * * * *$
3) The value of the maximum is $* * * * .8 * * * *$
4) The value of the maximum is $* * * * \cdot 2 * * * *$
5) The value of the maximum is $* * * * .5 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2} \leq \mathrm{z} \leq 81-\mathrm{x}^{2}-\mathrm{y}^{2}\right\}$

1) 5153 .
2) -515.3
3) 515.3
4) 12882.5
5) 11336.6

Exercise 3

Compute the mean curvature for $X(u, v)=\left\{v^{2} \operatorname{Cos}[u], v^{2} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(1,1)$.

1) $H(1,1)=8.52933$
2) $\mathrm{H}(1,1)=1.49121$
3) $\mathrm{H}(1,1)=-7.46509$
4) $\mathrm{H}(1,1)=0.134164$
5) $\mathrm{H}(1,1)=-8.76686$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 15

Exercise 1

Given the function
$f(x, y)=5 x^{3}-2 y^{3}$ defined over the domain $D \equiv$
$30 x^{2}+9 y^{2} \leqslant 561$, compute its absolute maxima and minima.

1) The value of the maximum is $* * * * .1 * * * *$
2) The value of the maximum is ****. 0 ****
3) The value of the maximum is $* * * * .9 * * * *$
4) The value of the maximum is ****. $6 * * * *$
5) The value of the maximum is $* * * * \cdot 2 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{10\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \leq \mathrm{z} \leq 36-\mathrm{x}^{2}-\mathrm{y}^{2}\right\}$

1) 351.63
2) 370.137
3) 462.671
4) 185.068
5) -18.5068

Exercise 3

Compute the mean curvature for $X(u, v)=\left\{2 u, 3 u^{2}, v\right\}$ at the point $(u, v)=(6,6)$.

1) $\mathrm{H}(6,6)=0.000128008$
2) $H(6,6)=-3.66162$
3) $H(6,6)=8.58892$
4) $H(6,6)=-0.507026$
5) $\mathrm{H}(6,6)=6.58504$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 16

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{3}-3 y^{3}}{x^{3}+6 x\left(1+2 x-2 x^{3}+x^{4}\right)-2 y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D=\left\{x^{2}+y^{2}+z^{2} \leq 169, z \geq 14\left(x^{2}+y^{2}\right)\right\}$

1) -11.3459
2) 24.5827
3) 18.9098
4) -18.9098
5) 43.4924

Exercise 3

Compute the Gauss curvature for $X(u, v)=\left\{e^{v} \operatorname{Cos}[u], e^{v} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(2,8)$.

1) $K(2,8)=5.76926$
2) $K(2,8)=-3.0973$
3) $K(2,8)=3.37955$
4) $\mathrm{K}(2,8)=-2.55199$
5) $K(2,8)=0$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 17

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{3}-y^{3}}{x^{3}-2 x\left(1+2 x+x^{3}\right)+y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D=\left\{x^{2}+y^{2}+z^{2} \leq 1, z \geq 15\left(x^{2}+y^{2}\right)\right\}$

1) 1.10131
2) 1.90131
3) -0.698694
4) 1.00131
5) 0.101306

Exercise 3

Compute the Gauss curvature for $X(u, v)=\{\operatorname{Cos}[u], \operatorname{Sin}[u], v\}$ at the point $(u, v)=(2,10)$.

1) $K(2,10)=3.85265$
2) $K(2,10)=6.56721$
3) $K(2,10)=2.24888$
4) $K(2,10)=-3.19474$
5) $K(2,10)=0$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 18

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+3 y^{4}}{x^{4}+3\left(x+x^{2}-x^{5}\right)-y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D=\left\{x^{2}+y^{2}+z^{2} \leq 100, z \geq 10 \sqrt{x^{2}+y^{2}}\right\}$

1) 23.9064
2) 12.4729
3) 15.5911
4) 10.3941
5) 8.31527

Exercise 3

Compute the Gauss curvature for $X(u, v)=\left\{u, u^{2}, v\right\}$ at the point $(u, v)=(2,3)$.

1) $K(2,3)=7.72699$
2) $K(2,3)=-1.60816$
3) $K(2,3)=-6.65694$
4) $K(2,3)=3.32244$
5) $K(2,3)=0$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 19

Exercise 1

Given the function
$f(x, y)=-x^{3}-2 y^{3}$ defined over the domain $D \equiv$
$9 x^{2}+3 y^{2} \leqslant 327$, compute its absolute maxima and minima.

1) The value of the maximum is $* * * * .8 * * * *$
2) The value of the maximum is $* * * * .6 * * * *$
3) The value of the maximum is $* * * * .7 * * * *$
4) The value of the maximum is $* * * * \cdot 9 * * * *$
5) The value of the maximum is $* * * * \cdot 3 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 4, \mathrm{z} \geq 5 \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}\right\}$

1) 0.325374
2) 0.125374
3) -1.07463
4) 1.32537
5) 1.32537

Exercise 3

Compute the mean curvature for $X(u, v)=\{\operatorname{Cos}[u], \operatorname{Sin}[u], v\}$ at the point $(u, v)=(4,6)$.

1) $\mathrm{H}(4,6)=-5.11011$
2) $H(4,6)=0.5$
3) $\mathrm{H}(4,6)=7.11135$
4) $\mathrm{H}(4,6)=6.36557$
5) $\mathrm{H}(4,6)=-0.738834$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 20

Exercise 1

Study the $\operatorname{limit,} \lim _{(x, y) \rightarrow(\theta, 0)} \frac{2 x^{3}+3 y^{3}}{-4 x+4 x^{2}+x^{3}-8 x^{4}-8 x^{5}+2 y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 121, \mathrm{z} \geq 4 \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}\right\}$

1) 183.11
2) 233.049
3) -83.232
4) 83.232
5) 149.818

Exercise 3

Compute the Gauss curvature for $X(u, v)=\{2 u, u, v\}$ at the point $(u, v)=(10,2)$.

1) $K(10,2)=2.93719$
2) $K(10,2)=-1.97454$
3) $K(10,2)=4.88722$
4) $K(10,2)=-8.92394$
5) $K(10,2)=0$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 21

Exercise 1

Given the function
$f(x, y)=-4 x^{3}+y^{3}$ defined over the domain $D \equiv$
$30 x^{2}+6 y^{2} \leqslant 846$, compute its absolute maxima and minima.

1) The value of the minimum is $* * * * .1 * * * *$
2) The value of the minimum is $* * * * .6 * * * *$
3) The value of the minimum is $* * * * .4 * * * *$
4) The value of the minimum is $* * * * .2 * * * *$
5) The value of the minimum is $* * * * \cdot 0 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{8\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \leq \mathrm{z} \leq 169-\mathrm{x}^{2}-\mathrm{y}^{2}\right\}$

1) 3987.87
2) 12960.6
3) 996.967
4) 4984.83
5) -498.483

Exercise 3

Compute the mean curvature for $X(u, v)=\left\{\mathbb{e}^{v} \operatorname{Cos}[u], \mathbb{e}^{v} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(1,4)$.

1) $\mathrm{H}(1,4)=1.0275$
2) $\mathrm{H}(1,4)=5.62393 \times 10^{-8}$
3) $\mathrm{H}(1,4)=-5.27768$
4) $\mathrm{H}(1,4)=7.82307$
5) $H(1,4)=-4.81542$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 22

Exercise 1

Study the $\operatorname{limit}, \lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-2 y^{4}}{x^{4}-9\left(x+x^{2}-x^{5}\right)+3 y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D=\left\{x^{2}+y^{2}+z^{2} \leq 49, z \geq 3 \sqrt{x^{2}+y^{2}}\right\}$

1) 73.7295
2) 36.8648
3) 44.2377
4) 55.2971
5) 14.7459

Exercise 3

Compute the Gauss curvature for $X(u, v)=\{\operatorname{Cos}[u], \operatorname{Sin}[u], v\}$ at the point $(u, v)=(6,3)$.

1) $K(6,3)=6.87791$
2) $K(6,3)=6.54461$
3) $K(6,3)=1.30319$
4) $K(6,3)=0$
5) $K(6,3)=-7.46441$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 23

Exercise 1

Given the function
$f(x, y)=-4 x^{3}+5 y^{3}$ defined over the domain $D \equiv$
$30 x^{2}+45 y^{2} \leqslant 2370$, compute its absolute maxima and minima.

1) The value of the maximum is $* * * * .1 * * * *$
2) The value of the maximum is $* * * * .5 * * * *$
3) The value of the maximum is $* * * * \cdot 3 * * * *$
4) The value of the maximum is $* * * * .6 * * * *$
5) The value of the maximum is $* * * * .8 * * * *$

Exercise 2

Compute the volume of $D=\left\{13\left(x^{2}+y^{2}\right) \leq z \leq 225-x^{2}-y^{2}\right\}$

1) 5680.11
2) 11360.2
3) -5112.1
4) 15904.3
5) 17040.3

Exercise 3

Compute the mean curvature for $X(u, v)=\left\{e^{v} \operatorname{Cos}[u], \mathbb{e}^{v} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(6,10)$.

1) $\mathrm{H}(6,10)=6.07401$
2) $H(6,10)=0$
3) $\mathrm{H}(6,10)=-4.79288$
4) $\mathrm{H}(6,10)=1.88195$
5) $\mathrm{H}(6,10)=1.13375$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 24

Exercise 1

Given the function
$f(x, y)=-x^{3}+4 y^{3}$ defined over the domain $D \equiv$
$6 x^{2}+6 y^{2} \leqslant 102$, compute its absolute maxima and minima.

1) The value of the maximum is $* * * * .8 * * * *$
2) The value of the maximum is $* * * * .7 * * * *$
3) The value of the maximum is $* * * * \cdot 3 * * * *$
4) The value of the maximum is $* * * * .9 * * * *$
5) The value of the maximum is $* * * * \cdot 5 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{15\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \leq \mathrm{z} \leq 4-\mathrm{x}^{2}-\mathrm{y}^{2}\right\}$

1) 3.76991
2) 1.5708
3) 2.67035
4) 0.785398
5) -1.41372

Exercise 3

Compute the mean curvature for $\mathrm{X}(\mathrm{u}, \mathrm{v})=\{\operatorname{Cos}[\mathbf{u}], \operatorname{Sin}[\mathbf{u}], \mathrm{v}\}$ at the point $(\mathbf{u}, \mathrm{v})=(4,3)$.

1) $\mathrm{H}(4,3)=-2.07793$
2) $\mathrm{H}(4,3)=3.44366$
3) $\mathrm{H}(4,3)=8.96097$
4) $\mathrm{H}(4,3)=0.5$
5) $\mathrm{H}(4,3)=8.7551$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 25

Exercise 1

Given the function
$f(x, y)=-3 x^{3}-y^{3}$ defined over the domain $D \equiv$
$27 x^{2}+3 y^{2} \leqslant 984$, compute its absolute maxima and minima.

1) The value of the minimum is $* * * * .1 * * * *$
2) The value of the minimum is $* * * * \cdot 3 * * * *$
3) The value of the minimum is $* * * * .8 * * * *$
4) The value of the minimum is $* * * * .4 * * * *$
5) The value of the minimum is $* * * * .9 * * * *$

Exercise 2

Compute the volume of $D=\left\{6\left(x^{2}+y^{2}\right) \leq z \leq 81-x^{2}-y^{2}\right\}$

1) 1472.28
2) -1472.28
3) 2355.66
4) -1325.06
5) 883.371

Exercise 3

Compute the mean curvature for $X(u, v)=\left\{v^{2} \operatorname{Cos}[u], v^{2} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(1,4)$.

1) $\mathrm{H}(1,4)=0.00196786$
2) $H(1,4)=-8.12964$
3) $\mathrm{H}(1,4)=-0.85369$
4) $\mathrm{H}(1,4)=-0.563691$
5) $\mathrm{H}(1,4)=-5.60481$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 26

Exercise 1

Given the function
$f(x, y)=-2 x^{3}+5 y^{3}$ defined over the domain $D \equiv$ $12 x^{2}+45 y^{2} \leqslant 1812$, compute its absolute maxima and minima.

1) The value of the minimum is $* * * * .4 * * * *$
2) The value of the minimum is $* * * * .7 * * * *$
3) The value of the minimum is $* * * * .0 * * * *$
4) The value of the minimum is $* * * * .1 * * * *$
5) The value of the minimum is $* * * * .9 * * * *$

Exercise 2

Compute the volume of $D=\left\{13\left(x^{2}+y^{2}\right) \leq z \leq 49-x^{2}-y^{2}\right\}$

1) 134.696
2) 457.966
3) 242.452
4) -134.696
5) 269.392

Exercise 3

Compute the mean curvature for $X(u, v)=\{v \operatorname{Cos}[u], v \operatorname{Sin}[u], v\}$ at the point $(u, v)=(6,9)$.

1) $\mathrm{H}(6,9)=0.0392837$
2) $H(6,9)=-0.732412$
3) $\mathrm{H}(6,9)=6.60453$
4) $H(6,9)=-1.55294$
5) $\mathrm{H}(6,9)=6.57478$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 27

Exercise 1

Given the function
$f(x, y)=-2 x^{3}-4 y^{3}$ defined over the domain $D \equiv$
$6 x^{2}+24 y^{2} \leqslant 408$, compute its absolute maxima and minima.

1) The value of the minimum is ****. 2 ****
2) The value of the minimum is $* * * * .4 * * * *$
3) The value of the minimum is $* * * * .9 * * * *$
4) The value of the minimum is ****. 0 ****
5) The value of the minimum is $* * * * .1 * * * *$

Exercise 2

Compute the volume of $D=\left\{15\left(x^{2}+y^{2}\right) \leq z \leq 36-x^{2}-y^{2}\right\}$

1) -50.8938
2) 127.235
3) 50.8938
4) -101.788
5) -76.3407

Exercise 3

Compute the mean curvature for $X(u, v)=\{v \operatorname{Cos}[u], v \operatorname{Sin}[u], v\}$ at the point $(u, v)=(4,8)$.

1) $\mathrm{H}(4,8)=1.98957$
2) $\mathrm{H}(4,8)=0.0441942$
3) $\mathrm{H}(4,8)=-3.17451$
4) $\mathrm{H}(4,8)=-7.72038$
5) $\mathrm{H}(4,8)=2.02683$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 28

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(0,0)}-\frac{x^{4}+3 y^{4}}{x^{4}-6 x\left(1+x+2 x^{4}\right)+3 y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 16, \mathrm{z} \geq 15 \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}\right\}$

1) -1.70312
2) -1.20312
3) 0.29688
4) 1.19688
5) 0.59688

Exercise 3

Compute the Gauss curvature for $X(u, v)=\{\operatorname{Cos}[u], \operatorname{Sin}[u], v\}$ at the point $(u, v)=(3,5)$.

1) $K(3,5)=4.9158$
2) $K(3,5)=0$
3) $K(3,5)=-8.34492$
4) $K(3,5)=-6.76858$
5) $\mathrm{K}(3,5)=4.09353$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 29

Exercise 1

Given the function
$f(x, y)=3 x^{3}+4 y^{3}$ defined over the domain $D \equiv$
$9 x^{2}+12 y^{2} \leqslant 84$, compute its absolute maxima and minima.

1) The value of the minimum is $* * * * .5 * * * *$
2) The value of the minimum is $* * * * .8 * * * *$
3) The value of the minimum is $* * * * \cdot 0 * * * *$
4) The value of the minimum is ****. 2 ****
5) The value of the minimum is $* * * * .1 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{9\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \leq \mathrm{z} \leq 100-\mathrm{x}^{2}-\mathrm{y}^{2}\right\}$

1) 4555.31
2) 3455.75
3) 1884.96
4) 1099.56
5) 1570.8

Exercise 3

Compute the mean curvature for $X(u, v)=\left\{v^{2} \operatorname{Cos}[u], v^{2} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(4,1)$.

1) $\mathrm{H}(4,1)=-2.83013$
2) $\mathrm{H}(4,1)=-7.86884$
3) $\mathrm{H}(4,1)=0.134164$
4) $\mathrm{H}(4,1)=-2.76686$
5) $\mathrm{H}(4,1)=4.93854$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 30

Exercise 1

Given the function
$f(x, y)=3 x^{3}-y^{3}$ defined over the domain $D \equiv$
$27 x^{2}+6 y^{2} \leqslant 1068$, compute its absolute maxima and minima.

1) The value of the maximum is $* * * * .8 * * * *$
2) The value of the maximum is $* * * * .6 * * * *$
3) The value of the maximum is $* * * * \cdot 3 * * * *$
4) The value of the maximum is ****. $2 * * * *$
5) The value of the maximum is $* * * * \cdot 5 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{5\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \leq \mathrm{z} \leq 81-\mathrm{x}^{2}-\mathrm{y}^{2}\right\}$

1) 5153 .
2) 3778.86
3) 1717.67
4) -687.066
5) -343.533

Exercise 3

Compute the mean curvature for $\mathrm{X}(\mathrm{u}, \mathrm{v})=\left\{\mathrm{v}^{2} \operatorname{Cos}[u], v^{2} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(1,10)$.

1) $\mathrm{H}(1,10)=4.44505$
2) $\mathrm{H}(1,10)=5.91046$
3) $\mathrm{H}(1,10)=0.000125155$
4) $\mathrm{H}(1,10)=8.23747$
5) $\mathrm{H}(1,10)=-0.874357$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 31

Exercise 1

Given the function
$f(x, y)=2 x^{3}-4 y^{3}$ defined over the domain $D \equiv$
$6 x^{2}+30 y^{2} \leqslant 774$, compute its absolute maxima and minima.

1) The value of the minimum is $* * * * .6 * * * *$
2) The value of the minimum is $* * * * .1 * * * *$
3) The value of the minimum is $* * * * .8 * * * *$
4) The value of the minimum is $* * * * \cdot 3 * * * *$
5) The value of the minimum is $* * * * .9 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 9, \mathrm{z} \geq 15 \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}\right\}$

1) -1.27475
2) 2.12525
3) 0.125246
4) 1.32525
5) -0.574754

Exercise 3

Compute the mean curvature for $X(u, v)=\{\operatorname{Cos}[u], \operatorname{Sin}[u], v\}$ at the point $(u, v)=(4,7)$.

1) $\mathrm{H}(4,7)=6.63468$
2) $\mathrm{H}(4,7)=0.5$
3) $\mathrm{H}(4,7)=-0.845539$
4) $\mathrm{H}(4,7)=8.71761$
5) $\mathrm{H}(4,7)=2.98842$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 32

Exercise 1

Given the function
$f(x, y)=4 x^{3}-2 y^{3}$ defined over the domain $D \equiv$
$18 x^{2}+3 y^{2} \leqslant 165$, compute its absolute maxima and minima.

1) The value of the minimum is $* * * * .9 * * * *$
2) The value of the minimum is $* * * * .6 * * * *$
3) The value of the minimum is $* * * * .7 * * * *$
4) The value of the minimum is ****. 3 ****
5) The value of the minimum is $* * * * .5 * * * *$

Exercise 2

Compute the volume of $D=\left\{12\left(x^{2}+y^{2}\right) \leq z \leq 100-x^{2}-y^{2}\right\}$

1) 966.644
2) 3141.59
3) 1208.3
4) -241.661
5) -1208.3

Exercise 3

Compute the mean curvature for $X(u, v)=\left\{e^{v} \operatorname{Cos}[u], \mathbb{e}^{v} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(2,8)$.

1) $\mathrm{H}(2,8)=-3.7615$
2) $\mathrm{H}(2,8)=6.45149$
3) $\mathrm{H}(2,8)=0$
4) $\mathrm{H}(2,8)=-7.85876$
5) $\mathrm{H}(2,8)=7.8952$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 33

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(\theta, \theta)} \frac{-2 x^{4}+3 y^{4}}{x^{4}+4 x\left(1+2 x+x^{4}\right)-2 y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 144, \mathrm{z} \geq 12\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right\}$

1) -15.0274
2) 18.7843
3) 0 .
4) 41.3254
5) 22.5411

Exercise 3

Compute the Gauss curvature for $X(u, v)=\left\{v^{2} \operatorname{Cos}[u], v^{2} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(4,5)$.

1) $K(4,5)=-7.84237 \times 10^{-6}$
2) $K(4,5)=-5.88881$
3) $K(4,5)=-3.80499$
4) $K(4,5)=-4.00207$
5) $K(4,5)=-6.56554$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 34

Exercise 1

Given the function
$f(x, y)=-4 x^{3}+y^{3}$ defined over the domain $D \equiv$
$30 x^{2}+6 y^{2} \leqslant 846$, compute its absolute maxima and minima.

1) The value of the minimum is $* * * * \cdot 2 * * * *$
2) The value of the minimum is $* * * * .8 * * * *$
3) The value of the minimum is $* * * * .6 * * * *$
4) The value of the minimum is $* * * * .4 * * * *$
5) The value of the minimum is $* * * * .7 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{5\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \leq \mathrm{z} \leq 169-\mathrm{x}^{2}-\mathrm{y}^{2}\right\}$

1) -6729.53
2) 8972.7
3) 7477.25
4) 747.725
5) 14206.8

Exercise 3

Compute the mean curvature for $X(u, v)=\left\{e^{v} \operatorname{Cos}[u], \mathbb{e}^{v} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(1,10)$.

1) $\mathrm{H}(1,10)=5.82309$
2) $\mathrm{H}(1,10)=4.10957$
3) $H(1,10)=-7.67979$
4) $\mathrm{H}(1,10)=0$
5) $\mathrm{H}(1,10)=-7.70886$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 35

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(\theta, \theta)} \frac{x^{4}-2 y^{4}}{x^{4}-6 x\left(1+2 x+x^{4}\right)+2 y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 225, \mathrm{z} \geq 4\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right\}$

1) 122.675
2) -35.05
3) 148.963
4) 87.6251
5) 157.725

Exercise 3

Compute the Gauss curvature for $X(u, v)=\left\{e^{v} \operatorname{Cos}[u], e^{v} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(5,7)$.

1) $K(5,7)=-3.74206$
2) $K(5,7)=7.58742$
3) $K(5,7)=0$
4) $K(5,7)=8.32493$
5) $K(5,7)=5.03265$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 36

Exercise 1

Given the function
$f(x, y)=-3 x^{3}+2 y^{3}$ defined over the domain $D \equiv$
$18 x^{2}+15 y^{2} \leqslant 663$, compute its absolute maxima and minima.

1) The value of the minimum is $* * * * .6 * * * *$
2) The value of the minimum is $* * * * .1 * * * *$
3) The value of the minimum is $* * * * .9 * * * *$
4) The value of the minimum is $* * * * \cdot 3 * * * *$
5) The value of the minimum is $* * * * \cdot 2 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{12\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \leq \mathrm{z} \leq 81-\mathrm{x}^{2}-\mathrm{y}^{2}\right\}$

1) 792.769
2) 79.2769
3) -475.661
4) -713.492
5) 2378.31

Exercise 3

Compute the mean curvature for $X(u, v)=\left\{v^{2} \operatorname{Cos}[u], v^{2} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(2,7)$.

1) $\mathrm{H}(2,7)=0.000365351$
2) $\mathrm{H}(2,7)=2.49182$
3) $\mathrm{H}(2,7)=-6.28748$
4) $\mathrm{H}(2,7)=-2.08674$
5) $\mathrm{H}(2,7)=-5.71399$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 37

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(\theta, \theta)} \frac{2 x^{4}+y^{4}}{x^{4}+6 x\left(1-2 x+x^{4}\right)-2 y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 225, \mathrm{z} \geq 10\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right\}$

1) 28.1803
2) 49.3155
3) 73.9733
4) 17.6127
5) 35.2254

Exercise 3

Compute the Gauss curvature for $X(u, v)=\left\{e^{v} \operatorname{Cos}[u], e^{v} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(6,3)$.

1) $K(6,3)=4.90857$
2) $K(6,3)=-6.27075$
3) $\mathrm{K}(6,3)=-6.11387 \times 10^{-6}$
4) $K(6,3)=6.86528$
5) $K(6,3)=-1.59181$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 38

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+3 y^{4}}{-3 x-6 x^{2}-x^{4}+6 x^{5}+y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D=\left\{x^{2}+y^{2}+z^{2} \leq 49, z \geq 6\left(x^{2}+y^{2}\right)\right\}$

1) 12.6767
2) 6.33833
3) -3.803
4) 31.6917
5) -8.87366

Exercise 3

Compute the Gauss curvature for $X(u, v)=\{v \operatorname{Cos}[u], v \operatorname{Sin}[u], v\}$ at the point $(u, v)=(5,3)$.

1) $K(5,3)=3.47388$
2) $K(5,3)=-2.40584$
3) $K(5,3)=0$
4) $K(5,3)=4.01567$
5) $K(5,3)=3.42497$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 39

Exercise 1

Given the function

```
f(x,y)=-5 x + +5 y defined over the domain D\equiv
    30 x}+30\mp@subsup{y}{}{2}\leqslant960, compute its absolute maxima and minima
```

1) The value of the maximum is ****. $5 * * * *$
2) The value of the maximum is $* * * * \cdot 3 * * * *$
3) The value of the maximum is $* * * * \cdot 2 * * * *$
4) The value of the maximum is ****. 0 ****
5) The value of the maximum is $* * * * .8 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 81, \mathrm{z} \geq 12\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right\}$

1) 4.22158
2) 10.5539
3) 29.551
4) 12.6647
5) 16.8863

Exercise 3

Compute the mean curvature for $\mathrm{X}(\mathrm{u}, \mathrm{v})=\{\operatorname{Cos}[\mathbf{u}], \operatorname{Sin}[\mathbf{u}], \mathrm{v}\}$ at the point $(\mathbf{u}, \mathrm{v})=(2,3)$.

1) $\mathrm{H}(2,3)=-4.96648$
2) $\mathrm{H}(2,3)=3.99655$
3) $\mathrm{H}(2,3)=8.85026$
4) $\mathrm{H}(2,3)=-6.27871$
5) $\mathrm{H}(2,3)=0.5$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 40

Exercise 1

Given the function
$f(x, y)=5 x^{3}-3 y^{3}$ defined over the domain $D \equiv$ $15 x^{2}+9 y^{2} \leqslant 96$, compute its absolute maxima and minima.

1) The value of the maximum is $* * * * \cdot 5 * * * *$
2) The value of the maximum is $* * * * \cdot 9 * * * *$
3) The value of the maximum is $* * * * \cdot 3 * * * *$
4) The value of the maximum is $* * * * \cdot 0 * * * *$
5) The value of the maximum is $* * * * .1 * * * *$

Exercise 2

Compute the volume of $D=\left\{x^{2}+y^{2}+z^{2} \leq 25, z \geq x^{2}+y^{2}\right\}$

1) 39.1544
2) 106.785
3) 46.2734
4) -24.9164
5) 35.5949

Exercise 3

Compute the mean curvature for $\mathrm{X}(\mathrm{u}, \mathrm{v})=\{\operatorname{Cos}[\mathrm{u}], \operatorname{Sin}[\mathrm{u}], \mathrm{v}\}$ at the point $(\mathbf{u}, \mathrm{v})=(1,1)$.

1) $\mathrm{H}(1,1)=-5.14054$
2) $\mathrm{H}(1,1)=-3.69375$
3) $\mathrm{H}(1,1)=2.75031$
4) $\mathrm{H}(1,1)=2.29636$
5) $H(1,1)=0.5$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 41

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{3}-3 y^{3}}{4 x-8 x^{2}+x^{3}-4 x^{4}-4 x^{5}-2 y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D=\left\{x^{2}+y^{2}+z^{2} \leq 100, z \geq 6\left(x^{2}+y^{2}\right)\right\}$

1) -25.963
2) 62.3112
3) 25.963
4) 0 .
5) 20.7704

Exercise 3

Compute the Gauss curvature for $X(u, v)=\left\{v^{2} \operatorname{Cos}[u], v^{2} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(3,4)$.

1) $K(3,4)=-1.14203$
2) $\mathrm{K}(3,4)=-5.43801$
3) $K(3,4)=-0.0000295858$
4) $\mathrm{K}(3,4)=-8.27165$
5) $K(3,4)=-3.10965$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 42

Exercise 1

Study the $\operatorname{limit}, \lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-2 y^{4}}{-2 x+4 x^{2}-x^{4}-2 x^{5}+4 x^{6}+y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 9, \mathrm{z} \geq 4\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right\}$

1) -2.71285
2) 3.39106
3) -2.37374
4) 2.71285
5) 9.83406

Exercise 3

Compute the Gauss curvature for $X(u, v)=\{\operatorname{Cos}[u], \operatorname{Sin}[u], v\}$ at the point $(u, v)=(5,8)$.

1) $K(5,8)=-3.33667$
2) $K(5,8)=8.52691$
3) $K(5,8)=-2.83479$
4) $K(5,8)=0$
5) $K(5,8)=5.62052$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 43

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(\theta, \theta)} \frac{-2 x^{4}+3 y^{4}}{x^{4}-9 x\left(1+2 x+x^{4}\right)+3 y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D=\left\{x^{2}+y^{2}+z^{2} \leq 49, z \geq 14 \sqrt{x^{2}+y^{2}}\right\}$

1) 2.19074
2) 2.19074
3) 5.47684
4) 1.82561
5) 0 .

Exercise 3

Compute the Gauss curvature for $X(u, v)=\{\operatorname{Cos}[u], \operatorname{Sin}[u], v\}$ at the point $(u, v)=(6,1)$.

1) $K(6,1)=5.12874$
2) $K(6,1)=2.98739$
3) $K(6,1)=0$
4) $K(6,1)=-4.20541$
5) $K(6,1)=5.10272$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 44

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(\theta, \theta)} \frac{3 x^{3}-2 y^{3}}{x^{3}+2 x\left(1-2 x-2 x^{3}+x^{4}\right)-y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D=\left\{x^{2}+y^{2}+z^{2} \leq 81, z \geq 8 \sqrt{x^{2}+y^{2}}\right\}$

1) 2.35805
2) 8.25317
3) -11.7902
4) 17.6854
5) 11.7902

Exercise 3

Compute the Gauss curvature for $X(u, v)=\left\{u, u^{2}, v\right\}$ at the point $(u, v)=(8,10)$.

1) $K(8,10)=-6.18286$
2) $K(8,10)=-7.07744$
3) $K(8,10)=0$
4) $K(8,10)=-7.66165$
5) $K(8,10)=0.794137$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 45

Exercise 1

Given the function
$f(x, y)=2 x^{3}-3 y^{3}$ defined over the domain $D \equiv$
$3 x^{2}+18 y^{2} \leqslant 291$, compute its absolute maxima and minima.

1) The value of the minimum is $* * * * .5 * * * *$
2) The value of the minimum is $* * * * .6 * * * *$
3) The value of the minimum is $* * * * .9 * * * *$
4) The value of the minimum is $* * * * .1 * * * *$
5) The value of the minimum is $* * * * \cdot 0 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 196, \mathrm{z} \geq 6\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right\}$

1) 91.8152
2) 51.0085
3) 10.2017
4) -5.10085
5) 81.6135

Exercise 3

Compute the mean curvature for $X(u, v)=\left\{3 u, 2 u^{2}, v\right\}$ at the point $(u, v)=(7,9)$.

1) $\mathrm{H}(7,9)=6.73239$
2) $\mathrm{H}(7,9)=0.000268684$
3) $\mathrm{H}(7,9)=5.44578$
4) $\mathrm{H}(7,9)=1.23159$
5) $\mathrm{H}(7,9)=8.48612$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 46

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(\theta, \theta)} \frac{-3 x^{3}+y^{3}}{-6 x+12 x^{2}-x^{3}+12 x^{4}+2 y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 196, \mathrm{z} \geq 2\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right\}$

1) 151.222
2) -45.3665
3) 75.6108
4) 408.298
5) -136.099

Exercise 3

Compute the Gauss curvature for $X(u, v)=\left\{e^{v} \operatorname{Cos}[u], e^{v} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(3,3)$.

1) $K(3,3)=6.60683$
2) $K(3,3)=-4.49495$
3) $\mathrm{K}(3,3)=-6.11387 \times 10^{-6}$
4) $K(3,3)=3.27451$
5) $K(3,3)=4.81488$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 47

Exercise 1

Given the function
$f(x, y)=-x^{3}-2 y^{3}$ defined over the domain $D \equiv$
$9 x^{2}+3 y^{2} \leqslant 327$, compute its absolute maxima and minima.

1) The value of the maximum is $* * * * \cdot 5 * * * *$
2) The value of the maximum is $* * * * .6 * * * *$
3) The value of the maximum is $* * * * .2 * * * *$
4) The value of the maximum is $* * * * .9 * * * *$
5) The value of the maximum is $* * * * .7 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{14\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \leq \mathrm{z} \leq 1-\mathrm{x}^{2}-\mathrm{y}^{2}\right\}$

1) -1.39528
2) 0.80472
3) 0.10472
4) -0.69528
5) -0.69528

Exercise 3

Compute the mean curvature for $X(u, v)=\{\operatorname{Cos}[u], \operatorname{Sin}[u], v\}$ at the point $(u, v)=(2,9)$.

1) $\mathrm{H}(2,9)=-1.86236$
2) $\mathrm{H}(2,9)=5.58321$
3) $\mathrm{H}(2,9)=0.5$
4) $\mathrm{H}(2,9)=-0.134494$
5) $\mathrm{H}(2,9)=7.96123$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 48

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{4}+2 y^{4}}{x^{4}+3 x\left(1-2 x-x^{4}+x^{5}\right)-y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D=\left\{x^{2}+y^{2}+z^{2} \leq 64, z \geq 8\left(x^{2}+y^{2}\right)\right\}$

1) 31.1718
2) 4.98748
3) 9.97496
4) 21.1968
5) 12.4687

Exercise 3

Compute the Gauss curvature for $X(u, v)=\{v \operatorname{Cos}[u], v \operatorname{Sin}[u], v\}$ at the point $(u, v)=(6,4)$.

1) $K(6,4)=-7.07364$
2) $K(6,4)=3.09423$
3) $K(6,4)=-0.863972$
4) $K(6,4)=-0.822434$
5) $K(6,4)=0$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 49

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(\theta, \theta)}-\frac{x^{4}+y^{4}}{x^{4}+6\left(x+x^{2}+2 x^{5}-2 x^{6}\right)-2 y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 225, \mathrm{z} \geq \mathrm{x}^{2}+\mathrm{y}^{2}\right\}$

1) 341.907
2) 512.86
3) -136.763
4) 307.716
5) 68.3813

Exercise 3

Compute the Gauss curvature for $X(u, v)=\left\{e^{v} \operatorname{Cos}[u], e^{v} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(5,2)$.

1) $K(5,2)=7.11015$
2) $K(5,2)=-7.28846$
3) $K(5,2)=3.54331$
4) $K(5,2)=6.78355$
5) $K(5,2)=-0.000323504$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 50

Exercise 1

Given the function
$f(x, y)=-3 x^{3}-4 y^{3}$ defined over the domain $D \equiv$
$9 x^{2}+12 y^{2} \leqslant 84$, compute its absolute maxima and minima.

1) The value of the maximum is $* * * * .7 * * * *$
2) The value of the maximum is $* * * * \cdot 9 * * * *$
3) The value of the maximum is $* * * * .5 * * * *$
4) The value of the maximum is $* * * * \cdot 0 * * * *$
5) The value of the maximum is $* * * * .6 * * * *$

Exercise 2

Compute the volume of $D=\left\{15\left(x^{2}+y^{2}\right) \leq z \leq 100-x^{2}-y^{2}\right\}$

1) 1963.5
2) 687.223
3) 392.699
4) -392.699
5) 981.748

Exercise 3

Compute the mean curvature for $X(u, v)=\left\{v^{2} \operatorname{Cos}[u], v^{2} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(4,3)$.

1) $\mathrm{H}(4,3)=0.00469006$
2) $\mathrm{H}(4,3)=5.12392$
3) $\mathrm{H}(4,3)=-8.43093$
4) $\mathrm{H}(4,3)=-6.9175$
5) $\mathrm{H}(4,3)=3.58012$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 51

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(\theta, \theta)} \frac{x^{3}-2 y^{3}}{x^{3}+6 x\left(1+x-x^{3}+x^{4}\right)-2 y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 169, \mathrm{z} \geq 3\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right\}$

1) 87.3634
2) 96.0997
3) 253.354
4) -78.627
5) 34.9454

Exercise 3

Compute the Gauss curvature for $X(u, v)=\left\{e^{v} \operatorname{Cos}[u], e^{v} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(1,6)$.

1) $K(1,6)=0.980175$
2) $K(1,6)=-7.10132$
3) $K(1,6)=6.99316$
4) $K(1,6)=6.1937$
5) $K(1,6)=0$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 52

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(\theta, 0)} \frac{3 x^{3}+2 y^{3}}{2 x-4 x^{2}+x^{3}+4 x^{4}-y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $D=\left\{x^{2}+y^{2}+z^{2} \leq 4, z \geq 4\left(x^{2}+y^{2}\right)\right\}$

1) 3.10089
2) -0.590647
3) 2.65791
4) 1.47662
5) 0 .

Exercise 3

Compute the Gauss curvature for $X(u, v)=\{\operatorname{Cos}[u], \operatorname{Sin}[u], v\}$ at the point $(u, v)=(3,7)$.

1) $K(3,7)=0$
2) $K(3,7)=-8.32127$
3) $K(3,7)=-2.57556$
4) $K(3,7)=-8.22468$
5) $K(3,7)=1.05248$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 53

Exercise 1

Given the function
$f(x, y)=-5 x^{3}-2 y^{3}$ defined over the domain $D \equiv$
$30 x^{2}+6 y^{2} \leqslant 504$, compute its absolute maxima and minima.

1) The value of the maximum is $* * * * .9 * * * *$
2) The value of the maximum is $* * * * .1 * * * *$
3) The value of the maximum is $* * * * .8 * * * *$
4) The value of the maximum is ****. $7 * * * *$
5) The value of the maximum is $* * * * \cdot 0 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 16, \mathrm{z} \geq 12\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right\}$

1) 1.86546
2) 3.10909
3) 2.90182
4) 0.621819
5) 2.07273

Exercise 3

Compute the mean curvature for $\mathrm{X}(\mathrm{u}, \mathrm{v})=\{\operatorname{Cos}[\mathrm{u}], \operatorname{Sin}[\mathrm{u}], \mathrm{v}\}$ at the point $(\mathrm{u}, \mathrm{v})=(0,7)$.

1) $\mathrm{H}(0,7)=-4.83869$
2) $H(0,7)=0.5$
3) $\mathrm{H}(0,7)=4.79908$
4) $\mathrm{H}(0,7)=8.78459$
5) $\mathrm{H}(0,7)=6.18145$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 54

Exercise 1

Given the function
$f(x, y)=3 x^{3}+5 y^{3}$ defined over the domain $D \equiv$
$27 x^{2}+45 y^{2} \leqslant 2592$, compute its absolute maxima and minima.

1) The value of the minimum is $* * * * .8 * * * *$
2) The value of the minimum is $* * * * \cdot 9 * * * *$
3) The value of the minimum is $* * * * .6 * * * *$
4) The value of the minimum is $* * * * .7 * * * *$
5) The value of the minimum is $* * * * .1 * * * *$

Exercise 2

Compute the volume of $D=\left\{x^{2}+y^{2}+z^{2} \leq 25, z \geq 11 \sqrt{x^{2}+y^{2}}\right\}$

1) 1.07516
2) 3.01044
3) 0.215031
4) 0.96764
5) 3.01044

Exercise 3

Compute the mean curvature for $X(u, v)=\left\{3 u, 3 u^{2}, v\right\}$ at the point $(u, v)=(6,5)$.

1) $\mathrm{H}(6,5)=7.71626$
2) $\mathrm{H}(6,5)=2.75493$
3) $\mathrm{H}(6,5)=2.4909$
4) $\mathrm{H}(6,5)=0.000190909$
5) $\mathrm{H}(6,5)=-4.69431$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 55

Exercise 1

Given the function
$f(x, y)=5 x^{3}+2 y^{3}$ defined over the domain $D \equiv$
$15 x^{2}+15 y^{2} \leqslant 435$, compute its absolute maxima and minima.

1) The value of the maximum is $* * * * .1 * * * *$
2) The value of the maximum is $* * * * .6 * * * *$
3) The value of the maximum is $* * * * .7 * * * *$
4) The value of the maximum is $* * * * \cdot 9 * * * *$
5) The value of the maximum is $* * * * .8 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 64, \mathrm{z} \geq 10\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right\}$

1) 14.9858
2) 14.9858
3) 9.99053
4) -8.99147
5) 28.9725

Exercise 3

Compute the mean curvature for $\mathrm{X}(\mathrm{u}, \mathrm{v})=\{\operatorname{Cos}[\mathbf{u}], \operatorname{Sin}[\mathbf{u}], \mathrm{v}\}$ at the point $(\mathbf{u}, \mathrm{v})=(3,8)$.

1) $\mathrm{H}(3,8)=1.174$
2) $\mathrm{H}(3,8)=6.9036$
3) $\mathrm{H}(3,8)=-1.72753$
4) $\mathrm{H}(3,8)=5.40393$
5) $\mathrm{H}(3,8)=0.5$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 56

Exercise 1

Given the function
$f(x, y)=-4 x^{3}+2 y^{3}$ defined over the domain $D \equiv$
$30 x^{2}+9 y^{2} \leqslant 831$, compute its absolute maxima and minima.

1) The value of the maximum is $* * * * .7 * * * *$
2) The value of the maximum is $* * * * .1 * * * *$
3) The value of the maximum is $* * * * .4 * * * *$
4) The value of the maximum is $* * * * .9 * * * *$
5) The value of the maximum is $* * * * \cdot 3 * * * *$

Exercise 2

Compute the volume of $D=\left\{14\left(x^{2}+y^{2}\right) \leq z \leq 169-x^{2}-y^{2}\right\}$

1) 6879.07
2) 2990.9
3) -2990.9
4) 4486.35
5) -2093.63

Exercise 3

Compute the mean curvature for $X(u, v)=\left\{\mathbb{e}^{v} \operatorname{Cos}[u], \mathbb{e}^{v} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(2,4)$.

1) $\mathrm{H}(2,4)=5.62393 \times 10^{-8}$
2) $H(2,4)=4.1266$
3) $\mathrm{H}(2,4)=-8.95527$
4) $\mathrm{H}(2,4)=6.18209$
5) $\mathrm{H}(2,4)=6.4197$

Further Mathematics - 2023/2024
 Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 57

Exercise 1

Given the function

$$
\begin{aligned}
& f(x, y)=2 x^{3}+y^{3} \text { defined over the domain } D \equiv \\
& 6 x^{2}+9 y^{2} \leqslant 348 \text {, compute its absolute maxima and minima. }
\end{aligned}
$$

1) The value of the minimum is $* * * * .7 * * * *$
2) The value of the minimum is $* * * * .4 * * * *$
3) The value of the minimum is $* * * * \cdot 0 * * * *$
4) The value of the minimum is $* * * * \cdot 5 * * * *$
5) The value of the minimum is $* * * * .1 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 225, \mathrm{z} \geq 8 \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}\right\}$

1) 54.5845
2) 65.5014
3) -38.2091
4) 109.169
5) -43.6676

Exercise 3

Compute the mean curvature for $X(u, v)=\{\operatorname{Cos}[u], \operatorname{Sin}[u], v\}$ at the point $(u, v)=(4,2)$.

1) $\mathrm{H}(4,2)=-8.63707$
2) $\mathrm{H}(4,2)=0.5$
3) $\mathrm{H}(4,2)=-2.09392$
4) $\mathrm{H}(4,2)=1.11184$
5) $\mathrm{H}(4,2)=-1.9182$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 58

Exercise 1

Given the function
$f(x, y)=-5 x^{3}+2 y^{3}$ defined over the domain $D \equiv$
$15 x^{2}+15 y^{2} \leqslant 435$, compute its absolute maxima and minima.

1) The value of the minimum is $* * * * .5 * * * *$
2) The value of the minimum is $* * * * .8 * * * *$
3) The value of the minimum is $* * * * .7 * * * *$
4) The value of the minimum is $* * * * .0 * * * *$
5) The value of the minimum is $* * * * .9 * * * *$

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 121, \mathrm{z} \geq 5\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right\}$

1) 90.4075
2) 37.6698
3) 33.9028
4) -15.0679
5) 26.3688

Exercise 3

Compute the mean curvature for $X(u, v)=\{\operatorname{Cos}[u], \operatorname{Sin}[u], v\}$ at the point $(u, v)=(2,10)$.

1) $\mathrm{H}(2,10)=5.25308$
2) $\mathrm{H}(2,10)=7.66941$
3) $\mathrm{H}(2,10)=0.5$
4) $\mathrm{H}(2,10)=-4.8887$
5) $\mathrm{H}(2,10)=-1.25666$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 59

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(0,0)}-\frac{3 x^{4}+y^{4}}{6 x+12 x^{2}+x^{4}-12 x^{5}-3 y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 16, \mathrm{z} \geq 8 \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}\right\}$

1) -0.103508
2) -0.931575
3) 1.03508
4) -1.03508
5) 2.79473

Exercise 3

Compute the Gauss curvature for $X(u, v)=\{\operatorname{Cos}[u], \operatorname{Sin}[u], v\}$ at the point $(u, v)=(3,8)$.

1) $K(3,8)=1.31747$
2) $K(3,8)=0$
3) $K(3,8)=-4.57757$
4) $\mathrm{K}(3,8)=0.809091$
5) $K(3,8)=-1.02454$

Further Mathematics - 2023/2024

Exam - January Call - Part 2 (to be solved by hand) - training for serial number: 60

Exercise 1

Study the limit, $\lim _{(x, y) \rightarrow(\theta, \theta)} \frac{x^{3}+y^{3}}{-6 x+6 x^{2}-x^{3}+6 x^{4}+2 y}$.

1) The limit exists.
2) For any line passing through the point we obtain the same limit
but there is a parabolic curve along which we obtain different limit.
3) We obtain different limit for different lines passing through the point.

Exercise 2

Compute the volume of $\mathrm{D}=\left\{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 196, \mathrm{z} \geq 15\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right\}$

1) 20.4763
2) 10.2381
3) 6.14288
4) 18.4287
5) 12.2858

Exercise 3

Compute the Gauss curvature for $X(u, v)=\left\{e^{v} \operatorname{Cos}[u], e^{v} \operatorname{Sin}[u], v\right\}$ at the point $(u, v)=(4,1)$.

1) $K(4,1)=8.89999$
2) $K(4,1)=-0.0142093$
3) $K(4,1)=-6.23159$
4) $K(4,1)=1.61183$
5) $K(4,1)=-8.17022$
