Grado en Ingeniería
 Further Mathematics. List of exercises.
 Chapter 3: Curves and surfaces

1) Consider the parameterized surface given by

$$
\begin{gathered}
X: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
X(u, v)=\left(u, v, u^{2}, v^{2}\right)
\end{gathered}
$$

Determine the point wht the biggest Gauss curvature.
2) Consider the parameterized surface given by

$$
\begin{gathered}
X:[0,2 \pi) \times \mathbb{R} \rightarrow \mathbb{R}^{3} \\
X(u, v)=\left(v^{2} \cos (u), v^{2} \sin (u), v\right)
\end{gathered}
$$

Determine the point for which the Gauss curvature is negative.
3) Consider the parameterized surface given by

$$
\begin{gathered}
X:[0,2 \pi) \times \mathbb{R} \rightarrow \mathbb{R}^{3} \\
X(u, v)=(v \cos (u), v \sin (u), v)
\end{gathered}
$$

Compute the Gauss and mean curvature.

Remark: To compute the Gauss curvature we need first to obtain the unit norm vector (shape operator) given by

$$
n(u, v)=\frac{X_{u}(u, v) \times X_{v}(u, v)}{\left\|X_{u}(u, v) \times X_{v}(u, v)\right\|}
$$

Then we know that the partial derivatives of $n(u, v)$ lye on the tangent plane at the corresponding point $X(u, v)$ that is generated by mean of the two tangent vectors $X_{u}(u, v), X_{v}(u, v)$. Therefore:

$$
\begin{array}{ll}
n_{u}(u, v) & \stackrel{\text { not }}{=} \frac{\partial n}{\partial u}(u, v)=\alpha_{u} X_{u}(u, v)+\beta_{u} X_{v}(u, v) \\
n_{v}(u, v) & \stackrel{\text { not }}{=} \\
\frac{\partial n}{\partial v}(u, v)=\alpha_{v} X_{u}(u, v)+\beta_{v} X_{v}(u, v)
\end{array}
$$

Then the Weingarten transformation is

$$
d n(u, v)=\left(\begin{array}{ll}
\alpha_{u} & \alpha_{v} \\
\beta_{u} & \beta_{v}
\end{array}\right)
$$

and then we have

- The Gauss curvature at $X(u, v)$ is $K(u, v)=\operatorname{det}(d n(u, v))=\alpha_{u} \beta_{v}-\alpha_{v} \beta_{u}$,
- The mean curvature at $X(u, v)$ is $H(u, v)=\frac{1}{2} \operatorname{trace}(d n(u, v))=\frac{1}{2}\left(\alpha_{u}+\beta_{u}\right)$.

